Pacific Journal of Mathematics

Localization in finite-dimensional FPF rings.

Theodore G. Faticoni

Article information

Source
Pacific J. Math., Volume 134, Number 1 (1988), 79-99.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689367

Mathematical Reviews number (MathSciNet)
MR953501

Zentralblatt MATH identifier
0658.16002

Subjects
Primary: 16A55
Secondary: 16A08 16A33 16A34

Citation

Faticoni, Theodore G. Localization in finite-dimensional FPF rings. Pacific J. Math. 134 (1988), no. 1, 79--99. https://projecteuclid.org/euclid.pjm/1102689367


Export citation

References

  • [AF] F. W. Anderson and K. R. Fuller, Rings and Categoriesof Modules, Graduate Texts in Mathematics 13, Springer-Verlag, New York, (1973).
  • [B] H. Bass, Finitistic dimension and a homologicalgeneralization ofsemi-primary rings, Trans. Amer. Math. Soc, 95 (1960), 466-488.
  • [Be] J. A. Beachy, Rings with finite reduced rank, Comm. Algebra, 10, 14 (1982), 1517-1536.
  • [Bu] W. D. Burgess, On nonsingular rightFPF rings,Comm.Algebra, 12, 14 (1984), 1729-1750.
  • [CH] A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing, Boston-Melborn, (1980).
  • [En] S. Endo, Completelyfaithful modules and quasi-Frobeniusalgebras,J. Math. Soc. Japan, 19 (1967), 437-456.
  • [Fa1] C. Faith,Injective Modules and Injective Quotient Rings, Lecture Notes in Pure and Applied Mathematics 72, Marcel Dekker, Inc., New York-Basel, (1982).
  • [Fa2] C. Faith,Injective cogeneratorrings and a theorem ofTachikawa II,Proc. Amer. Math. Soc, 62 (1977), 15-18.
  • [Fa3] C. Faith, AlgebraII: Ring Theory, Springer-Verlag, New York, (1976).
  • [Fa4] C. Faith, Injective Quotient Rings of Commutative Rings, Lecture Notes in Mathematics 700, Springer-Verlag, New York, (1979), 151-203.
  • [FP] C. Faith and S. S. Page, FPF Ring Theory, London Mathematical Society Lecture Note Series 88, Cambridge University Press, Cambridge-New York, (1984).
  • [FJ] M. Finkel-Jones, Flatness and f-projectivity of torsion-free modules andinjec- tive modules, Lecture Notes in Mathematics 951, Springer-Verlag, New York, (1981).
  • [Ftl] T. G. Faticoni, FPF rings I: The Noetherian case, Comm. Algebra, 13, 10 (1985), 2119-2136.
  • [Ft2] T. G. Faticoni, Semi-perfect FPF rings and applications, J. Algebra, 107, 2 (1987), 297-315.
  • [FZ] M. Fahy and J. Zelmanowitz, Semilocal rings of quotients, Proc. LondonMath. Soc, 3, 44(1982), 33-46.
  • [Ja] S. Jain, Flat andFP-injectivity, Proc. Amer. Math. Soc, 41, 2 (1973), 437-442.
  • [Pal] S. S. Page, Semi-prime and non-singularFPF rings, Comm. Algebra, 11, 3 (1982), 2253-2259.
  • [Pa2] S. S. Page, Semi-perfectFPF rings, Proc. Amer. Math. Soc, 89, 3 (1983), 395- 401.
  • [Pa3] S. S. Page, NoetherianFPFrings,preprint.
  • [Pa4] S. S. Page, FPFendomorphism rings with applications to QF-3 rings, Comm. Al- gebra, 14, 3 (1986), 423-435.
  • [Pi] P. Pillay, Polynomial rings over non-commutative rings, Pubs. Mats. AUB, 28 (1984), 29-49.
  • [Sm] L. Small, Ordersin Artinian ringsII, J. Algebra, 11 (1968), 266-273.
  • [St] B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin-New York, Number 217, (1975).