Pacific Journal of Mathematics
- Pacific J. Math.
- Volume 134, Number 1 (1988), 27-55.
The Adams spectral sequence of the real projective spaces.
Ralph L. Cohen, Wên Hsiung Lin, and Mark E. Mahowald
Full-text: Open access
Article information
Source
Pacific J. Math., Volume 134, Number 1 (1988), 27-55.
Dates
First available in Project Euclid: 8 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689365
Mathematical Reviews number (MathSciNet)
MR953499
Zentralblatt MATH identifier
0663.55011
Subjects
Primary: 55T15: Adams spectral sequences
Secondary: 55P42: Stable homotopy theory, spectra 55Q10: Stable homotopy groups
Citation
Cohen, Ralph L.; Lin, Wên Hsiung; Mahowald, Mark E. The Adams spectral sequence of the real projective spaces. Pacific J. Math. 134 (1988), no. 1, 27--55. https://projecteuclid.org/euclid.pjm/1102689365
References
- [1] J.F. Adams, Onthe structure and applications ofthe Steenrod algebra,Comm. Math. Helv., 32(1958), 180-214.
- [2] J.F. Adams,On the non-existenceofelements ofHopf invariant one, Ann. ofMath., 72(1960), 20-104.
- [3] M. G. Barratt, J.D. S. Jones and M. E. Mahowald, The Kervaireinvariant prob- lem, Proc. Northwestern Homotopy Theory Conference, Contemporary Math. Amer. Math. Soc, 19(1983), 9-23.
- [4] M. G. Barratt,Relations amongst Toda brackets and the Kervaire invariant in dimen- sion 62, J.London Math. Soc, 30(1984), 533-550.
- [5] J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology, 14 (1975), 1-12.
- [6] A. K. Bousfield, E. B. Curtis, D.M. Kan,D.G.Quillen,D.L. Roctor and J. W. Schlesinger, The mod-/? lower central series and the Adams spectral sequence, Topology, 5 (1966),331-342.
- [7] E. H. Brown, Jr. and S. Gitler, A spectrum whose cohomology is certain cyclic module over the Steenrod algebra, Topology, 12 (1973),283-296.
- [8] E. H. Brown, Jr. and F. P. Peterson, On the stable decompositionof2Sr+2, Trans. Amer. Math. Soc, 243 (1978),287-298.
- [9] R. Bruner, An infinitefamily in *S derivedfrom Mahowald's } family, Proc. Amer. Math. Soc, 82 (1981),637-639.
- [10] F. R. Cohen, T. L. Lada and J. P. May, TheHomology of Iterated Loop Spaces, Lee. Notes in Math. No. 533, Springer-Verlag, New York (1976).
- [11] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Memo. Amer. Math. Soc, No.242 (1981).
- [12] R. L. Cohen, J. D. S. Jones and Mark E. Mahowald,The Kervaire invariant of immersions, Invent. Math., 79 (1985),95-123.
- [13] E. B. Curtis, Simplicial homotopy theory, Advances in Math., 6 (1971), 107- 207.
- [14] M. Feshbach, The transfer and compact Lie groups, Trans. Amer. Math. Soc, 251 (1979), 139-169.
- [15] D. S. Kahn and S. B. Priddy, Applications of the transfer to the stable homotopy theory, Bull. Amer. Math. Soc, 78 (1972),981-991.
- [16] S. O. Kochman, Homology of the classical groups over the Dyer-Lashof opera- tions, Trans. Amer. Math. Soc, 185 (1973),83-136.
- [17] W. H. Lin, Algebraic Kahn-Priddytheorem, Pacific J. Math., 96 (1981), 435- 455.
- [18] W. H. Lin, Some elements in the stable homotopy of spheres, Proc Amer. Math. Soc, 95(1985),295-298.
- [19] M. E. Mahowald, The metastable homotopy of Sn, Memo. Amer. Math. Soc, 72 (1967).
- [20] M. E. Mahowald and M. Tangora, Some differentials in the Adams spectral sequence, Topology,6 (1967),349-369.
- [21] M. E. Mahowald and M. Tangora, On secondary operations which detect homotopy classes, Boletin Soc. Mat. Mexi., (1967),71-75.
- [22] M. E. Mahowald, A new infinitefamily in 2l, Topology, 16 (1977),249-256.
- [23] B. M. Mann, E. Y. Miller and H. R. Miller, S-equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc, 295 (1986),233-256.
- [24] R. J. Milgram,Iterated loop spaces, Ann. of Math., 84 (1966),386-403.
- [25] D. Ravenel, Complex Cobordism and Stable Homotopy of Spheres,Academic Press, 1986.
- [26] V. P. Snaith, A stable decompositionfor nSnX, J. London Math. Soc,2(1974), 577-583.
- [27] V. P. Snaith,Algebraic cobordism and K-theory, Memo. Amer. Math. Soc, No.221 (1979).
- [28] J. S. P. Wang, On the cohomology of the mod 2 Steenrod algebra and non- existence of elements of Hopf invariant one, Illinois J. Math., 11 (1967), 480- 490.
Pacific Journal of Mathematics, A Non-profit Corporation

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Real cobordism and greek letter elements in the geometric
chromatic spectral sequence
Hu, Po and Kriz, Igor, Homology, Homotopy and Applications, 2004 - Vanishing lines in generalized Adams spectral sequences are generic
Hopkins, M J, Palmieri, J H, and Smith, J H, Geometry & Topology, 1999 - The $T$–algebra spectral sequence: Comparisons and applications
Noel, Justin, Algebraic & Geometric Topology, 2014
- Real cobordism and greek letter elements in the geometric
chromatic spectral sequence
Hu, Po and Kriz, Igor, Homology, Homotopy and Applications, 2004 - Vanishing lines in generalized Adams spectral sequences are generic
Hopkins, M J, Palmieri, J H, and Smith, J H, Geometry & Topology, 1999 - The $T$–algebra spectral sequence: Comparisons and applications
Noel, Justin, Algebraic & Geometric Topology, 2014 - Higher Toda brackets and the Adams spectral sequence in triangulated categories
Christensen, J Daniel and Frankland, Martin, Algebraic & Geometric Topology, 2017 - Contractive projections on Banach spaces
, , 1988 - The motivic Adams spectral sequence
Dugger, Daniel and Isaksen, Daniel C, Geometry & Topology, 2010 - The $\eta$–inverted $\mathbb{R}$–motivic sphere
Guillou, Bertrand and Isaksen, Daniel, Algebraic & Geometric Topology, 2016 - The $RO(G)$-graded Serre spectral sequence
Kronholm, William C., Homology, Homotopy and Applications, 2010 - The Adams–Novikov spectral sequence and Voevodsky's slice tower
Levine, Marc, Geometry & Topology, 2015 - The second real Johnson-Wilson theory and nonimmersions of
$RP^n$
Kitchloo, Nitu and Wilson, W. Stephen, Homology, Homotopy and Applications, 2008