Pacific Journal of Mathematics

About compressible viscous fluid flow in a bounded region.

Gerhard Ströhmer

Article information

Source
Pacific J. Math., Volume 143, Number 2 (1990), 359-375.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645982

Mathematical Reviews number (MathSciNet)
MR1051082

Zentralblatt MATH identifier
0717.76095

Subjects
Primary: 35Q99: None of the above, but in this section
Secondary: 76N10: Existence, uniqueness, and regularity theory [See also 35L60, 35L65, 35Q30]

Citation

Ströhmer, Gerhard. About compressible viscous fluid flow in a bounded region. Pacific J. Math. 143 (1990), no. 2, 359--375. https://projecteuclid.org/euclid.pjm/1102645982


Export citation

References

  • [1] S.Agmon, A.Douglis, and L. Nirenberg, Estimates near the boundaryfor solu- tions of elliptic partial differential equations satisfying general boundarycondi- tions, Comm. Pure Appl. Math., 27(1964), 35-92.
  • [2] A.B.Cambel, Plasma Physics and Magneto-FluidMechanics, New York: Mc- GrawHill, 1963.
  • [3] A. Friedman, Partial Differential Equations, New York: Holt, Rinehart, Win- ston, 1969.
  • [4] A. V. Kazhikov and V. V. Shelukhin,Uniqueglobal solution with respect to time of initial boundary valueproblems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.
  • [5] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55(1979), 337-342.
  • [6] A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of compressible viscous and heat-conductive fluid, LectureNotes in Numerical and Applied Analysis, 5 (1982), 153-170, North Holland, Edited by H. Fujita, P. D. Lax, G.Strang,
  • [7] A. Matsumura and T. Nishida,Initial-boundaryvalueproblems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.
  • [8] M. Padula, Existence of global solutions for 2-dimensional viscous compressible flows, J. Funct. Anal., 69 (1986), 1-20.
  • [9] J. A. Shercliff, A Textbook of Magnetohydrodynamics, Oxford: Pergamon Press, 1965.
  • [10] G. Strhmer, About the resolvent of an operator from fluid dynamics, Math. Z., 194(1987), 183-191.
  • [11] G. Strhmer, About a certain class of parabolic-hyperbolic systems of differential equa- tions, Analysis, 9 (1989), 1-39.
  • [12] W. v.Wahl, The equations of Navier-Stokes and abstract parabolic equations, Braunschweig, F. Vieweg, 1985.