Pacific Journal of Mathematics

Mass of rays on complete open surfaces.

K. Shiohama, T. Shioya, and M. Tanaka

Article information

Source
Pacific J. Math., Volume 143, Number 2 (1990), 349-358.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645981

Mathematical Reviews number (MathSciNet)
MR1051081

Zentralblatt MATH identifier
0731.53044

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C45: Global surface theory (convex surfaces à la A. D. Aleksandrov)

Citation

Shiohama, K.; Shioya, T.; Tanaka, M. Mass of rays on complete open surfaces. Pacific J. Math. 143 (1990), no. 2, 349--358. https://projecteuclid.org/euclid.pjm/1102645981


Export citation

References

  • [I] S. Cohn-Vossen, Krzeste Wege und Totalkrmmung auf Flchen, Compositio Math., 2 (1935), 63-133.
  • [2] S. Cohn-Vossen, Totalkrmmung und geoddtischeLinien aufeinfachzusammenhdngenden offenen volstndigen Fchenstcken, Recueil Math. Moscow, 43 (1936), 139-- 163.
  • [3] F. Fiala, La probleme isoperimetres sur les surface ouvretes a courbure positive, Comment. Math. Helv., 13 (1941), 293-346.
  • [4] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math., 86 (1964), 705-727.
  • [5] A. Huber, On subharmonicfunctions and differentialgeometry in the large, Com- ment. Math. Helv., 32 (1957), 13-72.
  • [6] M. Maeda, On the existence of rays, Sci. Rep. Yokohama Nat. Univ., 26 (1979), 1-4.
  • [7] M. Maeda, A geometric significance of total curvature on complete open surfaces,Ge- ometry of Geodesies and Related Topics, Advanced Studies in Pure Math., 3 (1984), 451-458, Kinokuniya, Tokyo, 1984.
  • [8] M. Maeda, On the total curvatureofnoncompact Riemannian manifolds II, Yokohama Math. J., 33 (1985) 93-101.
  • [9] T. Oguchi, Total curvatureand measure of rays, Proc. Fac. Sci. Tokai Univ., 21 (1986), 1-4.
  • [10] K. Shiga, On a relation between the total curvature and the measure of rays, Tsukuba J. Math., 6 (1982), 41-50.
  • [II] K. Shiga, A relation between the total curvatureand the measure of rays II, Tohoku Math. J., 36(1984), 149-157.
  • [12] K. Shiohama, Cut locus and parallel circles of a closed curve on a Riemannian plane admitting total curvature,Comment. Math. Helv., 60 (1985), 125-138.
  • [13] K. Shiohama, Total curvaturesand minimal areas of complete opensurfaces,Proc. Amer. Math. Soc, 94 (1985), 310-316.
  • [14] K. Shiohama, An integralformula for the measure of rays on complete open surfaces,J. Differential Geometry, 23 (1986), 197-205.
  • [15] K. Shiohama and M. Tanaka, An isoperimetric problem for infinitely connected complete open surfaces, preprint.
  • [16] T. Shioya, On asymptotic behavior of the mass of rays, Proc. Amer. Math. Soc, 108 (1990), 495-505.