Pacific Journal of Mathematics

The power $3/2$ appearing in the estimate of analytic capacity.

Takafumi Murai

Article information

Pacific J. Math., Volume 143, Number 2 (1990), 313-340.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31A15: Potentials and capacity, harmonic measure, extremal length [See also 30C85]
Secondary: 30C85: Capacity and harmonic measure in the complex plane [See also 31A15]


Murai, Takafumi. The power $3/2$ appearing in the estimate of analytic capacity. Pacific J. Math. 143 (1990), no. 2, 313--340.

Export citation


  • [1] A.P.Caldern, CauchyintegralsonLipschitz curvesandrelatedoperators, Proc. Nat. Acad. Sci.USA, 74(1977), 1324-1327.
  • [2] A. M.Davie, Analytic capacity andapproximation problems, Trans. Amer. Math. So, 171(1972), 409-444.
  • [3] A.Denjoy, Surlesfunctions analytiques uniformes a singulartes discontinues, C. R.Acad. Sci.Paris, 149(1909), 258-260.
  • [4] J.Garnett,Analytic Capacityand Measure, Lecture Notes inMathematics, Vol. 297, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
  • [5] P.W.Jones, Squarefunctions, Cauchyintegrals,analytic capacity,and harmonic measure, preprint.
  • [6] N. S.Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin- Heidelberg-New York, 1972.
  • [7] B. B. Mandelbrot, The Fractal Geometry and Nature, Freeman, San Francisco, 1982.
  • [8] D. E. Marshall, Removable sets for bounded analytic functions, in Linear and Complex Analysis Problem Book (Edited by V. P. Havin, S. V. Hruscev and N. K. Niko ski), Lecture Notes in Mathematics, Vol. 1043, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984, 485-490.
  • [9] T. Murai, Comparison between analytic capacity and the Buffon needleproba- bility, Trans. Amer. Math. Soc, 304 (1987), 501-514.
  • [10] T. Murai,A Real VariableMethodfor the Cauchy Transform, andAnalytic Capacity, Lecture Notes in Mathematics, Vol. 1307, Springer-Verlag,Berlin-Heidelberg- New York-London-Paris-Tokyo, 1988.
  • [11] Ch.Pommerenke, Jber die analytische Kapazitt, Arch. Math., 11 (1960),270- 277.
  • [12] A. G.Vitushkin, Example of a set of positive length but of zero analytic capacity, (Russian) Dokl. Akad. Nauk SSSR, 127 (1959), 246-249.