Pacific Journal of Mathematics

The mod $2$ equivariant cohomology algebras of configuration spaces.

Nguyên H. V. Hung

Article information

Source
Pacific J. Math., Volume 143, Number 2 (1990), 251-286.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645976

Mathematical Reviews number (MathSciNet)
MR1051076

Zentralblatt MATH identifier
0755.55005

Subjects
Primary: 55P99: None of the above, but in this section
Secondary: 55S10: Steenrod algebra 57T99: None of the above, but in this section

Citation

H. V. Hung, Nguyên. The mod $2$ equivariant cohomology algebras of configuration spaces. Pacific J. Math. 143 (1990), no. 2, 251--286. https://projecteuclid.org/euclid.pjm/1102645976


Export citation

References

  • [I] E. Brieskorn, Sur les groupes de tresses,Seminaire Bourbaki, No. 401, 1971/72.
  • [2] F. Cohen, The Homology of &n+\-Spaces,n > 0, Springer Lecture Notes in Math., 533(1976), 207-351.
  • [3] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of theform problem, Trans. Amer. Math. So, 12 (1911), 75-98.
  • [4] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand., 10, No. 1 (1962), 111-118.
  • [5] D. B. Fuks, Cohomology of the braidgroups with coefficientsin Z2, Funktsional. Anal, i Prilozhen., 4 (1970), No. 2, 62-73.
  • [6] Huynh Mi, Modular invariant theory and cohomology algebras of symmetric groups,J. Fac. Sci., Univ. of Tokyo, Sec. IA, 22 (1975), 319-369.
  • [7] Huynh Mi, Duality in the infinite symmetric products, Acta Math. Vietnam., 5, No.1 (1980), 100-149.
  • [8] J. P. May, A GeneralAlgebraicApproach to Steenrod Operations,Springer Lec- ture Notes in Math., 169 (1970), 153-231.
  • [9] J. P. May, The Geometry of Iterated Loop Spaces, Springer Lecture Notes in Math., 271 (1972).
  • [10] J. P. May, The Homology of Oo Spaces, Springer Lecture Notes in Math., 533 (1976), 1-68.
  • [II] T. Nakamura, On cohomology operation, Japan. J. Math., 33 (1963), 93-145.
  • [12] M. Nakaoka, Homology of the infinite symmetric group, Ann. of Math., 73 (1961), 229-257.
  • [13] Nguy~en Huu Viet Hung, The mod 2 cohomologyalgebrasof symmetric groups, Acta Math. Vietnam., 6, No. 2 (1981), 41-48.
  • [14] Nguy~en Huu Viet Hung, The mod 2 equivariantcohomologyalgebrasoj'configuration spaces,Acta Math. Vietnam., 7, No. 1 (1982), 95-100.
  • [15] Nguy~en Huu Viet Hung, The modulo 2 cohomologyalgebrasof symmetric groups,Japan. J. Math.,
  • [13] No. 1 (1987), 169-208.
  • [16] No. 1 (1987), Algebre de cohomologie du groupe symetrique infini et classes caracteris- tiques de Dickson, C. R. Acad. Sci. Paris, t. 297, Serie I (1983), 611-614.
  • [16b] Nguyen H. V. Hung, Classesde Dickson et algebresde cohomologie deespaces de lacets iteres, C. R. Acad. Sci. Paris Serie I, 307 (1988), 911-914.
  • [16c] Nguyen H. V. Hung and Nguyen N. Hai, Steenrod operations on mod 2 ho- mology of the iterated loop space gSg , Acta Math. Vietnam., to appear.
  • [17] D. Quillen, The Adams conjecture,Topology, 10 (1971), 67-80.
  • [18] D. Quillen, The mod 2 cohomology rings of extra-special 2-groupsand the spinor groups,Math. Ann., 11 (1972), 197-212.
  • [19] G. Segal, Configurationspacesand iterated loopspaces,Invent. Math., 21(1973), 213-221.
  • [20] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies No. 50, Princeton Univ. Press (1962).
  • [21] R. Wellington, The unstableAdams spectralsequenceforfree iterated loopspaces, Memoirs of the Amer. Math. Soc, 36 (1982).