Pacific Journal of Mathematics

Simple periodic modules of twisted Chevalley groups.

Peter Fleischmann and Jens Carsten Jantzen

Article information

Source
Pacific J. Math., Volume 143, Number 2 (1990), 229-242.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645974

Mathematical Reviews number (MathSciNet)
MR1051074

Zentralblatt MATH identifier
0749.20003

Subjects
Primary: 20G05: Representation theory
Secondary: 20C20: Modular representations and characters 20G40: Linear algebraic groups over finite fields

Citation

Fleischmann, Peter; Jantzen, Jens Carsten. Simple periodic modules of twisted Chevalley groups. Pacific J. Math. 143 (1990), no. 2, 229--242. https://projecteuclid.org/euclid.pjm/1102645974


Export citation

References

  • [1] J. L. Alperin, Periodicity in groups, Illinois J. Math., 21 (1977), 776-783.
  • [2] J. L. Alperin and L. Evens, Representations, resolutionsand Quillen's dimension theorem, J. Pure Appl. Algebra, 22 (1981), 1-9.
  • [3] J. F.Carlson, Thevarieties andthecohomology ring of a module, J.Algebra,85 (1983), 104-143.
  • [4] J. F.Carlson, Module varieties andcohomology rings of finite groups, Vorlesungenaus dem FBMathematik derUniversitaetEssen, 13(1985).
  • [5] R.W.Carter, Finite Groupsof Lie Type: Conjugacy Classes andComplex Char- acters, New York etc. 1985(Wiley).
  • [6] P.Fleischmann, Periodic simple modulesfor SU^q2) in thedescribing charac- teristic pl,Math. Z.,198 (1988), 555-568.
  • [7] P.Fleischmann, The complexities and rank varieties of the simple modules of2A2(q2)in the natural characteristic, J. Algebra, 121 (1989),399-408.
  • [8] B.Huppert andN. Blackburn,Finite GroupsII,Berlin etc. 1982(Springer).
  • [9] I.Janiszczak,Irreducibleperiodic modules over SL(ra, q) inthedescribing char- acteristic, Comm. in algebra, 15 (1987),1375-1391.
  • [10] I.JaniszczakandJ. C.Jantzen, Simple periodic modules over Chevalley groups, to appear.
  • [11] J. C.Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeord- nete kontravariante Formen, Bonner math. Schriften, 63(1973).
  • [12] J. C.Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppenund Lie-Algebren,Math. Z.,140(1974), 127-149.
  • [13] J. C.Jantzen, Modular Representations of Reductive Groups,in Group Theory, Beijing 1984, Springer Lecture Notes, 1185(1986), 118-154.
  • [14] J. C.Jantzen,Representations ofAlgebraic Groups, Orlando etc. 1987, (Academic Press).
  • [15] A.V. Jeyakumar,Periodic modulesfor thegroups SL(2, q), Comm. inAlgebra, 8(1980), 1721-1735.
  • [16] G.M.Seitz,Representations andmaximal subgroups of finite groupsofLie type, Geometriae Dedicata, 25 (1988), 391-406.
  • [17] S.D.Smith, Irreduciblemodules andparabolic subgroups, J.Algebra, 75 (1982), 286-289.
  • [18] R. Steinberg,Representations of algebraic groups, Nagoya Math. J., 22(1963), 33-56.
  • [19] R. Steinberg,Lectures on Chevalley Groups,Yale Univ. (1968).
  • [20] F.D.Veldkamp,Representations ofalgebraicgroupsof type F4 incharacteristic
  • [2] J. Algebra, 16 (1970),326-339.