Pacific Journal of Mathematics

Isolation amongst the composition operators.

Joel H. Shapiro and Carl Sundberg

Article information

Source
Pacific J. Math., Volume 145, Number 1 (1990), 117-152.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645610

Mathematical Reviews number (MathSciNet)
MR1066401

Zentralblatt MATH identifier
0732.30027

Subjects
Primary: 47B38: Operators on function spaces (general)
Secondary: 30D55 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Shapiro, Joel H.; Sundberg, Carl. Isolation amongst the composition operators. Pacific J. Math. 145 (1990), no. 1, 117--152. https://projecteuclid.org/euclid.pjm/1102645610


Export citation

References

  • [I] E. Berkson, One-parametersemigroups ofisometries into Hp , Pacific J. Math., 86(1980), 403-413.
  • [2] E. Berkson, Composition operators isolated in the uniform operatortopology, Proc. Amer. Math. Soc, 81 (1981), 230-232.
  • [3] E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces,Trans. Amer. Math. Soc, 185 (1973), 331-354.
  • [4] P. S. Bourdon and J. H. Shapiro, Cyclicphenomena for compositionoperators, in preparation.
  • [5] C. Caratheodory, Theory of Functions of a Complex Variable, Vol II, second English edition, Chelsea, New York, 1960.
  • [6] J. G. Caughran, Polynomial approximation and spectral properties of composi- tion operatorson H2 , Indiana Univ. Math. J., 21 (1971), 81-84.
  • [7] J. G. Caughran and H. J. Schwartz, Spectra of compact compositionoperators, Proc. Amer. Math. Soc, 51 (1970), 127-130.
  • [8] C. C. Cowen, Composition operators on H2, J. Operator Theory, 9 (1983), 77-106.
  • [9] C. C. Cowen, Subnormality of the Cesaro operator and a semigroup of composition op- erators,Indiana Univ. Math. J., 33 (1984), 305-318.
  • [10] C. C. Cowen, Linear fractional composition operatorson H2, Integral Equations Oper- ator Theory, 11 (1988), 151-160.
  • [II] C. C. Cowen and T. L. Kriete III,Subnormality and composition operators on H2 , J. Funct. Anal., 81 (1988), 298-319.
  • [12] J. A. Deddens, Analytic Toeplitz and composition operators,Canad. J. Math., 24(1972), 859-865.
  • [13] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  • [14] J. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.
  • [15] P. R. Halmos, A Hubert Space Problem Book, 2nd ed., Springer-Verlag, New York, 1982.
  • [16] H. Kamowitz, The spectra of composition operatorson Hp , J. Funct. Anal., 18 (1975), 132-150.
  • [17] J. E. Littlewood, On inequalities in the theory of functions, Proc LondonMath. Soc, 23 (1925), 481-519.
  • [18] B. D. MacCluerand J. H. Shapiro,Angular derivativesand compact composition operatorson Hardy and Bergman spaces,Canad. J. Math., 38 (1986), 878-906.
  • [19] B. D. MacCluer, Components in the space of composition operators,Integral Equations Operator Theory, 12 (1989), 725-738.
  • [20] E. Nordgren, Composition operators,Canad. J. Math., 20 (1968), 442-449.
  • [21] Ch. Pommerenke, Univalent Functions, VandenHoeck & Ruprecht,Gttingen, 1975.
  • [22] W. Rudin, Real and Complex Analysis, 2nd ed. McGraw-Hill,New York, 1974.
  • [23] J. V. Ryff, Subordinate Hp functions, Duke Math. J., 33 (1966), 347-354.
  • [24] H. J. Schwartz, Composition operatorson Hp , Thesis, Univ. of Toledo, 1969.
  • [25] J. H. Shapiro, The essential norm of a composition operator,Annals of Math., 125 (1987), 375-404.
  • [26] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt compo- sition operators on Hp , Indiana Univ. Math. J., 23 (1973), 471-496.
  • [27] A. Siskakis, Composition semigroups and the Cesarooperatoron Hp , J. London Math. Soc, (2) 36 (1987), 153-164.
  • [28] A. Siskakis, Personal communication, 1986.
  • [29] N. Zorboska, Composition operators on weighted Hardy spaces, Thesis, Univ. of Toronto, 1988.