Pacific Journal of Mathematics

The orientability of matchbox manifolds.

J. M. Aarts, C. L. Hagopian, and L. G. Oversteegen

Article information

Source
Pacific J. Math., Volume 150, Number 1 (1991), 1-12.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637839

Mathematical Reviews number (MathSciNet)
MR1120708

Zentralblatt MATH identifier
0769.54043

Subjects
Primary: 54F15: Continua and generalizations
Secondary: 57M99: None of the above, but in this section

Citation

Aarts, J. M.; Hagopian, C. L.; Oversteegen, L. G. The orientability of matchbox manifolds. Pacific J. Math. 150 (1991), no. 1, 1--12. https://projecteuclid.org/euclid.pjm/1102637839


Export citation

References

  • [I] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math., 129 (1988), 39-58.
  • [2] J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math., 131 (1988), 53-67.
  • [3] J. M. Aarts, Orientation of orbits in flows, Papers on General Topology and Related Category Theory and Topological Algebra, Annals of the New York Academy of Sciences, 552 (1989), 1-7.
  • [4] J. M. Aarts and L. G. Oversteegen, The product structure of homogeneous spaces, Indag. Math., 1 (1990), 1-5.
  • [5] F. D. Ancel, An alternative proof and applications of a theorem ofE. G. Effros, Michigan Math. J., 34 (1987), 39-55.
  • [6] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math., 67 (1958), 313-324.
  • [7] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
  • [8] R. H. Bing, Embedding circle like continua in the plane, Canad. J. Math., 14 (1962), 113-126.
  • [9] E. G. Effros, Transformation groups and C*-algebras,Ann. of Math., 81 (1965), 38-55.
  • [10] R. Engelking, Dimension Theory, Warszawa 1978.
  • [II] C. L. Hagopian, A characterization of solenoids, Pacific J. Math., 68 (1977), 425-435.
  • [12] M. W. Mislove and J. T. Rogers, Local product structures on homogeneous con- tinua, preprint.
  • [13] E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc, 63 (1948), 581-594.
  • [14] S. B.Nadler, Hyperspaces of Sets, New York (N.Y.)1978.
  • [15] V. V. Nemytskii andV. V. Stepanov, Qualitative Theory of Differential Equa- tions, Princeton (N.J.)1960.
  • [16] E. S. Thomas, One-dimensional minimal sets, Topology, 12 (1973),233-242.
  • [17] H.Whitney, Regular families of curves,Ann. of Math., 34 (1933),244-270.