Pacific Journal of Mathematics

Sur la projection de variétés algébriques réelles.

Daniel Pecker

Article information

Source
Pacific J. Math., Volume 152, Number 1 (1992), 165-173.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102636497

Mathematical Reviews number (MathSciNet)
MR1139979

Zentralblatt MATH identifier
0748.14020

Subjects
Primary: 14P10: Semialgebraic sets and related spaces

Citation

Pecker, Daniel. Sur la projection de variétés algébriques réelles. Pacific J. Math. 152 (1992), no. 1, 165--173. https://projecteuclid.org/euclid.pjm/1102636497


Export citation

References

  • [A.G1] C. Andradas et J. M. Gamboa, A note on projections of realalgebraic varieties,Pacific J. Math., 115, no. 1, (1984), 1-11.
  • [A.G2] C. Andradas et J. M. Gamboa, On projections of real algebraicvarieties,Pacific J. Math., 121, no.
  • [B.C.R] J. Bochnak, M. Coste and M. F. Roy, Geometrie Algebrique Reelle, Ergebnisse der Mathematik, vol. 12, Springer-Verlag, 1987.
  • [LI] S. Lang, Fundamentals of Diophantine Geometry,Springer-Verlag, 1983.
  • [L2] S. Lang, Introduction to Algebraic Geometry, Interscience, 1958.
  • [Mil] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton Univ. Press, Princeton, N.J., 1968.
  • [Motl] T. S. Motzkin, Elimination theory of algebraicinequalities, Bull. Amer. Math. Soc, 61 (1955), 326.
  • [Mot2] T. S. Motzkin, The Real Solution Set of a System of Algebraic Inequalities is the Projection of a Hypersurface in One More Dimension, Inequalities II, Academic Press, 1970, pp. 251-254.
  • [PI] D. Pecker, Sur I'equation d'un ensemble algebrique de Rn+dont la projection dans Rn est un ensemble semi-algebrique ferme donne, C.R. Acad. Sci. Paris, 306, serie I, (1988), 265-268.
  • [P2] D. Pecker, On the elimination of algebraicinequalities, Pacific J. Math., 146, no. 2, (1990), 305-314.
  • [P3] D. Pecker, Projectionspropres de varietes algebriquesreelles,C.R. Acad. Sci. Paris, 309, serie I, (1989), 777-779.
  • [Sam] P. Samuel, Methodes d'Algebre Abstraite en Geomtrie Algebrique, Springer, Berlin, Heidelberg, New York, 1967.
  • [Sha] I. R. Shafarevich,Basic Algebraic Geometry, Springer, Berlin, Heidelberg, New York, 1974.