Pacific Journal of Mathematics

Real algebraic curves and link cobordism.

Patrick Gilmer

Article information

Pacific J. Math., Volume 153, Number 1 (1992), 31-69.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 14H45: Special curves and curves of low genus 57N70: Cobordism and concordance


Gilmer, Patrick. Real algebraic curves and link cobordism. Pacific J. Math. 153 (1992), no. 1, 31--69.

Export citation


  • [A] V. I. Arnold, A branched covering of CP(2) -> S4, hyperbolicity andprojec- tivity topology,Siberian Math. J., 29 (1988), 717-726.
  • [AK] S. Akbulut and R. Kirby, Branched coversof surfaces in 4-manifolds, Math. Ann., 252(1980), 111-113.
  • [B] R. Bott, Lectures on Morse theory, new and old, Bull. Amer. Math. Soc, 7, (1982), 331-358.
  • [CGI] A. Casson and C. McA. Gordon, Cobordism of classicalknots, printed notes, Orsay 1975. (Reprinted in: ed A. Marin and L. Guillou, A la Recherche de la Topologie Perdue, Progress in Mathematics 62, Birkhauser, 1986.)
  • [CG2] A. Casson and C. McA. Gordon, On slice knots in dimension three, Proc Symp. in Pure Math., XXX (1978), part two, pp. 39-53.
  • [Cl] D. Cooper, Signatures of surfacesin 3-manifolds and applications to knot and link cobordism, thesis, Warwick University, 1982.
  • [C2] D. Cooper, The universal abelian cover of a link, 51-56, ed. R. Brown, and T. L. Thicksun, Low Dimensional Topology, L.M.S. 48 (1982), Cambridge Uni- versity Press.
  • [E-N] D. Eisenbud and W. Neuman, Three-dimensional link theory and invariants of plane curve singularities, Annals of Math. Studies, 110 (1985), Princeton University Press.
  • [Gl] P. Gilmer, Configurations of surfaces in 4-manifolds, Phd. thesis Berkeley, May 1978.
  • [G2] P. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc, 264(1981), 353-380.
  • [G3] P. Gilmer, Link cobordism in rational homology spheres,in preparation.
  • [G4] P. Gilmer, Real algebraiccurvesand link cobordism II, in preparation.
  • [Go] C. McA. Gordon, Aspects of Classical Knot Theory, Knot Theory, Lecture Notes in Math. vol. 685, Springer, New York, (1978), 1-60.
  • [Gu] D. A. Gudkov, The topology of real projective algebraic varieties, Russian Math. Surveys 29, 4 (1974), 1-79.
  • [Fl] T. Fiedler, New congruencesin the topologyof realplane curves,Soviet Math. Dokl., 27(1983), 566-568.
  • [F2] T. Fiedler,Real points on complex plane curves,Math.Ann., 284 (1989), 267-284.
  • [F3] T. Fiedler, Additional inequalities in the topology of real plane algebraic curves, Math. USSR Iszvestia, 27 (1986), no. 1, 183-191.
  • [F4] T. Fiedler, Pencils of lines and the topology of real algebraiccurves,Math.USSR Iszvestia, 21 (1983), 161-170.
  • [K] R. Kirby, A calculusfor framed links in S3, Invent. Math.,45 (1978), 35-56.
  • [Ku] N. H. Kuiper, The quotient space of CP(2) by complex conjugation is the 4-sphere, Math. Ann., 208 (1974), 175-177.
  • [L] J. Levine, Knot cobordismgroupsin codimension two, Comment.Math.Helv., 44(1969), 229-244.
  • [L-P] F. Laudenbach and V. Poenaru,A note on 4-dimensionalhandlebodies, Bull. Math. Soc. France, 100 (1972), 337-344.
  • [Ma] W. Massey, The quotient space of the complex projective plane under conju- gation is a 4-sphere,Geometriae Dedicata, 2 (1973), 371-374.
  • [M] D. Mumford, Algebraic Geometry I Complex Projective Varietes, Grundlehren der mathematishen Wissenschaften 221, 1976, Springer-Verlag.
  • [Mil] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies
  • [Mi2] J. Milnor, Lectures on the h-cobordism theorem, (1985), Princeton University Press.
  • [Mi3] J. Milnor, On the three dimensional Breiskorn manifolds M(p, q, r), ed. L. P. Neuwirth, Knots, Groups, and 3-manifolds, papers dedicated to the memory ofR. H. Fox, Annals of Math. Studies, 84 (1975), Princeton University Press.
  • [N] M. Namba, Geometry of Projective Algebraic Curves, (1984), Marcel Dekker, New York and Basel.
  • [P] T. Price, Homeomorphisms of quaternion space and projective planes in four space, J. Austral. Math. Soc, 23 (1977), 112-128.
  • [Rl] V. A. Rokhlin, Complex orientations of real algebraic curves, Funct. Anal. AppL, 6(1978), 77-89.
  • [R2] V. A. Rokhlin, Complex topological characteristics of real algebraic curves, Russian Math. Surveys, 33:5 (1978), 85-98.
  • [Ro] D. Rolfsen, Knots and Links, (1976) Mathematical lecture series 7, Publish or Perish.
  • [Ru] J. H. Rubinstein, On 3-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc, 251 (1979), 129-137.
  • [S] L. Smolinsky, A generalization of the Levine-Tristram link invariant, Trans. Amer. Math. Soc, 315, no. 1 (1989), 205-217.
  • [S-T] Seifert and Threfall, A Textbook of Topology, (1980), Academic Press.
  • [T] A. G. Tristram, Some cobordism invariantsfor links, Proc Cambridge Philos. Soc, 66(1969), 251-264.
  • [VI] O. Ya. Viro, Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys, 41 (1986), 55-82.
  • [V2] O. Ya. Viro, Real plane curvesof degrees 1 and 8 : newprohibitions, Math. U.S.S.R. Iszvestia, 23 (1984), 409-422.
  • [W] G. Wilson, Hilbert's sixteenth problem, Topology, 17 (1978), 53-73.