Pacific Journal of Mathematics

$A_\infty$ and the Green function.

Jang-Mei Wu

Article information

Source
Pacific J. Math., Volume 157, Number 1 (1993), 159-178.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634871

Mathematical Reviews number (MathSciNet)
MR1197052

Zentralblatt MATH identifier
0791.31009

Subjects
Primary: 31B05: Harmonic, subharmonic, superharmonic functions

Citation

Wu, Jang-Mei. $A_\infty$ and the Green function. Pacific J. Math. 157 (1993), no. 1, 159--178. https://projecteuclid.org/euclid.pjm/1102634871


Export citation

References

  • [I] L. Carleson, Estimates of harmonic measures, Ann. Acad. Sci. Fenn., 7 (1982), 25-32.
  • [2] R. R. Coifman and C.Fefferman, Weightednorm inequalitiesfor maximal func- tions and singular integrals,Studia Math., 51 (1974),241-250.
  • [3] J. Fernandez, J. Heinonen and O. Martio, Quasilines and conformal mappings, J. Analyse Math., 52 (1989), 117-132.
  • [4] J. B. Garnett, Applications of Harmonic Measure, Wiley, 1986.
  • [5] J. B. Garnett, F. W. Gehring and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J., 32 (1983),809-829.
  • [6] F.W. Gehring, The Lp-integrability of thepartial derivativesof a quasiconformal mapping, Acta Math., 139 (1973),265-277.
  • [7] F.W. Gehring, Uniform domains and the ubiquitous quasidisk,Jber. d. Dt. Math.-Verein, 89 (1987),88-103.
  • [8] F. W. Gehring and J. Vaisala, The coefficients of quasiconformality of domains in space, Acta Math., 114 (1965), 1-70.
  • [9] J. Heinonen and R. Nakki, Quasiconformal distortion on arcs,J. Analyse Math., (to appear).
  • [10] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontan- gentially accessibledomains, Adv. in Math., 46 (1982),80-147.
  • [II] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
  • [12] P. W. Jones, Quasiconformal mappings and extendability offunctions in Sobolevspaces, Acta Math., 147 (1981),71-88.
  • [13] P. W. Jones and D. Marshall, Critical points of Green's function, harmonic measure, and the corona problem, Ark. Mat, 23 (1985),281-314.
  • [14] S. Mazurkiewicz and S. Saks, Sur les projections d'un ensemble ferme, Fund. Math., 8(1926), 109-113.
  • [15] Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis, 4 (1984), 299-321.
  • [16] S. Saks, Remarque sur la measure lineare des ensembles plans, Fund. Math., 9 (1926), 16-24.
  • [17] J. Vaisala, Lectures on n-DimensionalQuasiconformal Mappings, Lecture Notes in Math., Vol. 229, Springer-Verlag,1971.
  • [18] A. G. Vituskin, L. D. Ivanov and M. S. Mel'nikov, Incommensurability of the minimal linear measure with the length of a set, Dokl. Akad. Nauk SSSR, 115 (1963), 1256-1259; English transl. in Soviet Math. Dokl., 4 (1963), 1160-1164.
  • [19] J.-M. Wu, Content and harmonic measure: an extension of Hall's Lemma, In- diana Univ. Math. J., 36 (1987), 403-420.