Pacific Journal of Mathematics

Skeins and handlebodies.

W. B. R. Lickorish

Article information

Pacific J. Math., Volume 159, Number 2 (1993), 337-349.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}


Lickorish, W. B. R. Skeins and handlebodies. Pacific J. Math. 159 (1993), no. 2, 337--349.

Export citation


  • [I] M. F. Atiyah, The Geometry of Physics and Knots, Cambridge Univ. Press, (1990).
  • [2] L. H. Kauffman, Knots and Physics, World Scientific, (1991).
  • [3] L. H. Kauffman and S. Lins, A 3-manifold invariant by state summation, pre- print, University of Illinois at Chicago, (1991).
  • [4] A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra Uq(S\(2)), q-orthogonalpolynomials and invariants of links. Infinite dimensional Lie alge- bras and groups, ed. V. G. Kac, World Scientific, (1989).
  • [5] W. B. R. Lickorish, Linear skein theory and link polynomials, Topology and its Appl., 27(1987), 265-274.
  • [6] W. B. R. Lickorish, Three-manifold invariantsfrom the combinatorics of the Jones polynomial, Pacific J. Math., 149 (1991), 337-347.
  • [7] W. B. R. Lickorish, Three-manifolds and the Temperley-Lieb algebra,Math. Ann., 290 (1991), 657-670.
  • [8] W. B. R. Lickorish, Calculations with the Temperley-Lieb algebra,Comment. Math. Helv., 67 (1992), 571-591.
  • [9] G. Masbaum and P. Vogel, 3-valentgraphs and the Kauffman bracket, preprint, Universite Paris VII, (December 1991).
  • [10] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci. Math., (to appear).
  • [II] P. Vogel, Seminar at the Universite de Provence, Marseille, (April 1991).
  • [12] E. Witten, Quantum field theory and Jones' polynomial, Comm. Math. Phys., 121 (1989), 351-399.