Pacific Journal of Mathematics

A note on intermediate subfactors.

Dietmar Bisch

Article information

Pacific J. Math., Volume 163, Number 2 (1994), 201-216.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L37: Subfactors and their classification


Bisch, Dietmar. A note on intermediate subfactors. Pacific J. Math. 163 (1994), no. 2, 201--216.

Export citation


  • [Bil] D. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc, 321 (1990), 117-128.
  • [Bi2] D. Bisch, Subfactorsarisingfrom groups and their representations, unpublished manuscript.
  • [B-N] J. Bion-Nadal, An example of a subfactor of the hyperfinite Hi factor whose principal graph invariant is the Coxeter graph E, Current Topics in Oper- ator Algebras, World Scientific Publishing, 1991,pp. 104-113.
  • [GHJ] F.Goodman, P. de la Harpe and V. F.R. Jones, Coxeter graphs and towers of algebras,MSRI publications 14, Springer, 1989.
  • [Ha] U. Haagerup, in preparation.
  • [II] M. Izumi, Application of fusion rules to classification of subfactors, Publ. RIMS Kyoto Univ., 27 (1991), 953-994.
  • [12] M. Izumi, On flatness of the Coxeter graph E%,preprint 1992.
  • [Jol] V. F. R. Jones, Index of subfactors,Invent. Math., 72 (1983), 1-25.
  • [Jo2] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math., 126 (1987), 335-388.
  • [Jo3] V. F. R. Jones, A converse to Ocneanu's theorem, J. Operator Theory, 10 (1983), 61-63.
  • [Ka] Y. Kawahigashi, On flatness of Ocneanu *s connections on the Dynkin dia- grams and classificationof subfactors,preprint, 1990 .
  • [KY] H. Kosaki and S. Yamagami,Irreducible bimodules associated withcrossed product algebras, preprint, 1992.
  • [NT] N.Nakamura and Z. Takeda, On some elementary properties of the crossed products of von Neumann algebras, Proc. Japan Acad., 34 (1958), 489-494.
  • [Ocl] A. Ocneanu, Quantized group string algebras and Galois theoryfor operator algebras,in Operator Algebras andApplications2, London Math. Soc.Lect. Notes Series, 136 (1988), 119-172.
  • [Oc2] A. Ocneanu, Quantum symmetry, differential geometry of finite graphs andclassi- fication of subfactors, Universityof Tokyo Seminar Notes 45, 1991 (Notes recorded by Y.Kawahigashi).
  • [PiPol] M. Pimsner and S. Popa, Entropy and index of subfactors,Ann. Scient. Ec. Norm. Sup., 19 (1986), 57-106.
  • [PiPo2] M. Pimsner and S. Popa, Iterating the basic construction, Trans. Amer. Math. Soc,310 (1988), 127-133.
  • [Pol] S. Popa, Sousfacteurs, actions des groupes et cohomologie, C. R. Acad.Sci. Paris, Serie I, 309 (1989), 771-776.
  • [Po2] S. Popa, Classification of subfactors: reduction to commuting squares, Invent. Math., 101 (1990), 19-43.
  • [Po3] S. Popa, Sur la classificationdes sous-facteursd'indicefini dufacteur hyperfini, C. R. Acad. Sci. Paris, Serie I, 311 (1990), 95-100.
  • [Po4] S. Popa, Classification of amenable subfactors and their automorphisms, pre- print, 1991.
  • [SV] V. S. Sunder and A. K. Vijayaran, On the non-occurrenceof the Coxeter graphs E, D2n+\ asprincipal graphs ofan inclusion of Hi factors, preprint, 1991.
  • [Su] N. Suzuki, Crossed products of rings of operators, Tohoku Math. J., 11 (1959), 113-124.
  • [Wei] H. Wenzl, Hecke algebras of type A and subfactors, Invent. Math., 92 (1988), 345-383.
  • [We2] H. Wenzl, Quantum groups and subfactors of type B, C and D, Comm. Math. Phys., 133 (1990), 383-432.