Pacific Journal of Mathematics

Enveloping algebras and representations of toroidal Lie algebras.

Stephen Berman and Ben Cox

Article information

Source
Pacific J. Math., Volume 165, Number 2 (1994), 239-267.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102621616

Mathematical Reviews number (MathSciNet)
MR1300833

Zentralblatt MATH identifier
0809.17022

Subjects
Primary: 17B35: Universal enveloping (super)algebras [See also 16S30]
Secondary: 17B10: Representations, algebraic theory (weights)

Citation

Berman, Stephen; Cox, Ben. Enveloping algebras and representations of toroidal Lie algebras. Pacific J. Math. 165 (1994), no. 2, 239--267. https://projecteuclid.org/euclid.pjm/1102621616


Export citation

References

  • [1] R. Amayo, I. Stewart, Infinite dimensional Lie algebras, Noordhoft Int. Publ., 1974.
  • [2] S. Berman, On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras, Comm. in Alg.,17 1989,3165-3185.
  • [3] S. Berman, R. Moody, Lie Algebras Graded by Finite Root Systems and the Intersection Matrix Algebras of Slodowy, to appear in Invent. Math., 1992.
  • [4] M. Fabbri, Representations of generalized Heisenberg Algebras, Ph. D. Thesis, Univ. of Alberta, 1992.
  • [5] V. Futorny, On imaginary Verma modules over the affine A\ , preprint from Univ. of Oslo, 1991.
  • [6] P. Hilton, U. Stammbach, A Course in Homological Algebra, Springer- Verlag, 1970.
  • [7] R. H0egh-Krohn, B. Torressani, Classification and Construction of Quasi- simple Lie algebras, J. of Funct. Anal.,89 1990, 106-134.
  • [8] N. Jacobson, Lie algebras, John Wiley and Sons, Inc.,1962.
  • [9] V. Kac, Infinite dimensional Lie algebras, Third Edition, Cambridge Univ. Press., 1990.
  • [10] C. Kassel, Khler Differentials and coverings of complex simple Lie alge- bras extended over a commutative ring, J. Pure and Appl. Alg., 34 1984, 265-275.
  • [11] C. Kassel, J. Loday, Extension centrales d'algebras de Lie, Ann. Inst. Fourier, Grenoble, 32 1982, 119-142.
  • [12] R. Moody, S. Rao,T. Yokonuma, Toroidal Lie Algebras and Vertex Rep- resentations, Geom. Ded.,35 1990, 283-307.
  • [13] R. Moody, S. Rao, T. Yokonuma, Lie algebras and Weyl groups arising from Vertex operator representations, preprint.
  • [14] R. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.
  • [15] A. Rocha-Caridi, N. Wallach, Characters of Irreducible Representations of the Virasoro Algebra, Math. Z., 185 1984, 1-21.
  • [16] P. Slodowy, Beyond Kac-Moody algebras and inside, Can. Math. Soc. Proc.,5 1986, 361-371.
  • [17] P.Slodowy, Kac-Moody algebras, assoziiert Gruppen und Verallgemeineru- ugen, Habiliationsschrift, Universitat Bonn, 1984.
  • [18] B. Torresani, Unitary Positive Energy Representations of the Gauge Group, Lett. Math. Physics, 13 1987, 7-15.