Pacific Journal of Mathematics

Dehn filling hyperbolic $3$-manifolds.

Colin Adams

Article information

Source
Pacific J. Math., Volume 165, Number 2 (1994), 217-238.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102621615

Mathematical Reviews number (MathSciNet)
MR1300832

Zentralblatt MATH identifier
0812.57015

Subjects
Primary: 57N10: Topology of general 3-manifolds [See also 57Mxx]
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M50: Geometric structures on low-dimensional manifolds

Citation

Adams, Colin. Dehn filling hyperbolic $3$-manifolds. Pacific J. Math. 165 (1994), no. 2, 217--238. https://projecteuclid.org/euclid.pjm/1102621615


Export citation

References

  • [1] C. Adams, Thrice-Punctured Spheres in Hyperbolic 3-Manifolds, Trans, of A.M.S., 287:2 (1985), 645-656.
  • [2] C. Adams, Augmented Alternating Link Complements are Hyperbolic, in Low-dimensionalTopology and Kleinian Groups, ed. by D. Epstein, London Math.Soc. Lecture Note Series 112, Cambridge University Press (1986), 115-130.
  • [3] J. W. Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA, 9 (1923), 93-95.
  • [4] R. H. Bing, Necessary and sufficient conditions that a 3-manfold be S3, Ann. of Math., 68 (1958), 17-37.
  • [5] S. Bleiler and C. Hodgson, Spherical spaceforms and Dehn filling, preprint.
  • [6] R. C. Canary, D.B.A. Epstein and P. Green, Notes on Notes of Thurston, Analytical and Geometrical aspects of hyperbolic space, (Coventry/Du- rham 1984) 3-92, London Math. Soc. Lecture Notes, 111, Cambridge Univ. press, 1987.
  • [7] F. Gonzalez-Acuna, unpublished.
  • [8] M. Gromov and W. Thurston, Pinching constants for hyperbolic mani- folds, Invent. Math., 89 (1987), 1-12.
  • [9] W. Haken, Theone der Normal Flachen, Acta Math., 105 (1961), 245- 375.
  • [10] J. Hempel, 3-Manfolds, Annals of Mathematics Studies 86, Princeton University Press, 1976.
  • [11] H. Hilden, M. T. Lozano, J. M. Montesinos, On knots that are universal, Topology,24:4 (1985), 499-504.
  • [12] C. Hodgson and J. Weeks, private communication.
  • [13] W. Jaco, Lectures on three-manifold topology, Regional Conference Series in Mathematics 43, American Mathematical Society, 1980.
  • [14] W.B.R.Lickorish, A representation of onentable combinatorial three-ma- nifolds, Annals of Math., 76 (1962), 531-540.
  • [15] R. Myers, Open book decompositions of 3-manfolds, Proc. Am. Math. Soc, 72 (1978), 397-402.
  • [16] R. Myers, Simple knots in compact,orientable S-manifolds,Trans, of A.M.S., 273:1 (1982), 75-91.
  • [17] R. Myers, Excellent 1-manifolds in compactS-manifolds, preprint.
  • [18] D. Rolfsen, Knots and Links, Publish or Perish, Inc., Berkeley, 1976.
  • [19] W. Thurston, The Geometryand Topology of -Manifolds, lecture notes, Princeton University, 1978.
  • [20] W. Thurston, Universal Links, preprint (1982).
  • [21] A.D. Wallace, Modifications and cobounding manifolds, Canad. J. Math., 6 (I960), 268-279.