Pacific Journal of Mathematics

On systems of generators of arithmetic subgroups of higher rank groups.

T. N. Venkataramana

Article information

Source
Pacific J. Math., Volume 166, Number 1 (1994), 193-212.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102621249

Mathematical Reviews number (MathSciNet)
MR1306038

Zentralblatt MATH identifier
0822.22005

Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 20G15: Linear algebraic groups over arbitrary fields

Citation

Venkataramana, T. N. On systems of generators of arithmetic subgroups of higher rank groups. Pacific J. Math. 166 (1994), no. 1, 193--212. https://projecteuclid.org/euclid.pjm/1102621249


Export citation

References

  • [l] Borel, Harder, Existence of discrete cocompact subgroups of reductive groups over localfields, J. Reine Angew. Math., 298 (1978), 53-64 .
  • [2] Borel, Harish, Chandra, Arithmetic subgroups of Algebraic Groups, Ann. of Math., 75 (1965) 485-535.
  • [3] Borel, Tits, Groupes Reductifs, Publ. Math. IHES, 27 (1965), 55-150.
  • [4] Harder, Uber die Galoiskohomologie des halbeinfacker algebraischer grup- pen III, J. Reine Angew. Math., 274/275(1975), 125-138.
  • [5] Kneser, Erzeugende und Relation en Verallgemeinerter Einheitengruppen, Crelle's J., 214/215 (1964), 345-349.
  • [6] Margulis, Arithmeticity of the irreducible lattices in semisimple groups of rank greater than 1, Invent. Math., 76 (1984), 93-120.
  • [7] Margulis, Finiteness of quotient groups of discrete groups, Funct. Anal. Appl., 13 (1979), 178-187.
  • [8] Platonov, The Problem of Strong Approximation and theKneser-Tits Hypothesis for Algebraic Groups, Math. USSR, Izv., 3 (1970), 1139-1147.
  • [9] G.Prasad, Strong Approximation for semisimple groups over function fields, Ann. of Math., 105 (1977), 553-572.
  • [10] Prasad, Raghunathan, On the Congruence subgroup problem:determi- nation of the metaplectic kernel, Invent. Math., 71 (1983), 21-42.
  • [11] Raghunathan, On the Congruence Subgroup Problem, Publ. Math. IHES, 46 (1976), 107-161.
  • [12] Raghunathan, On the congruence subgroup problem II, Invent. Math., 85 (1986), 73-117.
  • [13] Raghunathan, A note on generators for arithmetic subgroups of algebraic groups, Pacific J. Math., 152 (1991), 365-373.
  • [14] Serre, Le problem de groupes de congruence pour SL2, Ann. Math., 92 (1970), 489-527.
  • [15] Tits, Systems Generatteurs de Groupes de Congruence, C.R. Acad. Sci., Paris, Serie A 283 (1976), 693.
  • [16] Tits, Algebraic and abstract simple groups, Annals of Math., 80 (1964), 313-329.
  • [17] Vaserstein, The Structure of Classical Arithmetical Groups of rank greater than one, (English translation) Math. USSR; Sbornik, 20 (1973), 465- 492.
  • [18] Vaserstein, On the group SL2 over Dedekind rings of arithmetic type, Math. USSR Sbornik, 18 (1972),no.2.