Pacific Journal of Mathematics

On the compactness of a class of Riemannian manifolds.

Zhiyong Gao and Guojun Liao

Article information

Source
Pacific J. Math., Volume 166, Number 1 (1994), 23-42.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102621243

Mathematical Reviews number (MathSciNet)
MR1306032

Zentralblatt MATH identifier
0829.53037

Subjects
Primary: 53C23: Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Citation

Gao, Zhiyong; Liao, Guojun. On the compactness of a class of Riemannian manifolds. Pacific J. Math. 166 (1994), no. 1, 23--42. https://projecteuclid.org/euclid.pjm/1102621243


Export citation

References

  • [1] R.Bishop, R.Crittenden, Geometry of Manifolds, Acad.Press, New York, (1964).
  • [2] M.Berger, Les varietes riemanniennes(l/4)-pincees, Ann. Scuola. Norm, sup. Pisa Sci. Fis. Mat., (3) 14 (I960), 160-170.
  • [3] C.B.Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Super., Paris, 13 (1980), 419-435.
  • [4] J.Cheeger, D.G.Ebin, Comparison Theorems in RiemannianGeometry, North-Holland Mathematical Library, 9, North-Holland, Amsterdam, (1975).
  • [5] J.Cheeger, D.Gromoll, On the structure of complete manifolds of non- negative curvature, Ann. of Math., 96, No.3 (1972), 413-443.
  • [6] J.Cheeger, M.Gromov, M.Taylor, Finite propagation speed, kernel esti- mates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J.Differential Geom., 17 (1982), 15-54.
  • [7] S.Y.Cheng, P.Li, S.T.Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., 103 (1981), 1021-1063.
  • [8] H.Federer, Geometric Measure Theory, Springer-Verlag, Berlin (1969).
  • [9] M.Freedman, The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-454.
  • [10] D.Gromoll, Differenzierbare Strukturen and Metriken positiverKrum- mung auf Spharen, Math. Ann., 164 (1966), 353-371.
  • [11] D.Gromoll, W.Klingenberg,W.Meyer,RiemannsaheGeometrieim Grossen, Second edition. Lect. Notes in Math., Springer-Verlag (1975).
  • [12] L.Z.Gao, Ln/2curvature pinching, J.Differential Geom., 32, No.3 (1990), 713-774.
  • [13] L.Z.Gao, Einstein metrics, J.Differential Geom., 32, No.l (1990), 155- 184.
  • [14] L.Z.Gao, Convergence of Riemannian manifolds, Ricci pinching and Ln^2 curvature pinching, J.Differential Geom., 32, No.2 (1990), 349-382.
  • [15] M.Gromov, J.Lafontaine, P.Pansu, Struture metrique pour les varietes Riemanniennes,Cedic/Fernand, Nathan (1981).
  • [16] M.Gromov, Manifolds of negative curvature, J.Differential Geom., 13 (1978), 223-230.
  • [17] M.Gromov, Groups of Polynomial Growth and Expanding Maps, Inst. Hautes Etudes Sci., (1986).
  • [18] K.Grove, P.Petersen, Bounding homotopy types by geometry, Ann. of Math., 128 (1988), 195-206.
  • [19] M.Gromov, W.Thurston, Pinching constants for hyperbolic manifolds, Invent. Math., 89 (1987), 1-12.
  • [20] R.Greene, H.Wu, Lipschitz convergence of Riemannian manifolds, Pacific J.Math., 131 (1988), 119-141.
  • [21] G.Huisken, Ricci deformation of the metric on a Riemannianmanifold, J.Differential Geom., 21 (1985),47-62.
  • [22] R.Hamilton,Three manifolds with positive Ricci curvature, J.Differential Geom., 17 (1982), 255-306.
  • [23] M.A.Kervaire, J.W.Milnor, Groups of homotopy sphere, I, Ann.of Math., (2) 77 (1963), 504-537.
  • [24] S.Kobayashi, K.Nomizu,Foundations of Differential Geometry, John Wi- ley, New York (1963).
  • [25] K.Klingenberg, UberRiemannsche Mannigfaltigkeiten mit positiver Krum- mung, Comment. Math. Helv., 35 (1961), 47-54.
  • [26] P.Li, On Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Ecole. Norm. Super., (4) 13 (1980),451-469.
  • [27] Min-Oo, Almost Einstein manifolds of negative Ricci curvature, J. Dif- ferential Geom., 32, No.2 (1990), 457 -472.
  • [28] S.Peters, Convergence of Riemannian manifolds, Compositio Math., 62 (1987), 3-16.
  • [29] E.A.Ruh, Curvature and differentiable structures on spheres, Comment. Math. Helv., 46 (1971), 127-136.
  • [30] E.A.Ruh, Riemannian manifolds with bounded curvature ratios, J. Dif- ferential Geom., 17 (1982), 643-653.
  • [31] H.E.Rauch, A contribution to differential geometry in the large, Ann. of Math., (2) 54 (1951), 38-55.
  • [32] L.Sibner, The isolated point singularity problem for the coupled Yang- Mills equations in higher dimensions, Math. Ann., 271 (1985), 125-131.
  • [33] S.Smale, Generalized Poincare conjecture in dimensions greater than four, Ann. of Math., 74 (1961), 391-406.
  • [34] J.Wolf, Spaces of Constant Curvature, McGraw-Hill, New York (1967).
  • [35] Deane Yang, Lp pinching and compactness theorems for compact Rie- mannian manifolds, preprint.