Pacific Journal of Mathematics

Eigenvalue bounds and girths of graphs of finite, upper half-planes.

Nancy Celniker

Article information

Pacific J. Math., Volume 166, Number 1 (1994), 1-21.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05C50: Graphs and linear algebra (matrices, eigenvalues, etc.)
Secondary: 11T99: None of the above, but in this section


Celniker, Nancy. Eigenvalue bounds and girths of graphs of finite, upper half-planes. Pacific J. Math. 166 (1994), no. 1, 1--21.

Export citation


  • [1] J. Angel, Ph.D. Thesis, (U.C.S.D. 1993).
  • [2] F. Bien, Construction of Telephone Networks by Group Representations, Notices of the A.M.S., 36 (1989), 5-22.
  • [3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London 1974.
  • [4] N. Celniker, S. Poulos, A. Terras, C. Trimble and E. Velasquez, Is There Life on Finite, Upper Half Planes?, to appear in Contemporary Math., Amer. Math. Soc.,1990.
  • [5] F. R. K. Chung, Diameters and Eigenvalues, J. of the Amer. Math Soc. , 2 (1980), 187-196.
  • [6] P. Diaconis, Group Representations in Probability and Statistics, Inst. of Math. Stat., Lect. Note-Monograph Series, Haywood, 11 (1988).
  • [7] N. Katz, Estimates for SotondradeSums - 1, pre-print.
  • [8] M. Klawe, Limitationson explicit constructions of expanding graphs, S.I.A.M. J. Comput. 13 (1984), 156-166.
  • [9] A. Lubotsky, R. Phillips, and P. Sarnak, Ramanujan Graphs, Combina- torica, 8 (1988), 261-277.
  • [10] G. Mackey, Unitary Group Representations in Physics, Probability and Number Theory, Benjamin/Cummings, Reading, Mass, 1978.
  • [11] S. Poulos, Ph.D. Thesis, U.C.S.D. 1991.
  • [12] A. Terras, Eigenvalue Problems Related to Finite Analogues of Upper Half-Planes, to appear in H. Weyl memorial Volume, Texas A&M Uni- versity, 1991.
  • [13] A. Terras, Harmonic Analysis on SymmetricSpaces and Applications, 1,11 1985,1988, Springer-Verlag, New York.