Pacific Journal of Mathematics

A non-Haken hyperbolic $3$-manifold covered by a surface bundle.

Alan W. Reid

Article information

Source
Pacific J. Math., Volume 167, Number 1 (1995), 163-182.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620979

Mathematical Reviews number (MathSciNet)
MR1318168

Zentralblatt MATH identifier
0817.57014

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx]

Citation

Reid, Alan W. A non-Haken hyperbolic $3$-manifold covered by a surface bundle. Pacific J. Math. 167 (1995), no. 1, 163--182. https://projecteuclid.org/euclid.pjm/1102620979


Export citation

References

  • [1] C. C. Adams, SNAPPEA,the Weeks hyperbolic three-manifolds program, Notices Amer. Math. So, 37 (1990), 273-275.
  • [2] M. D. Baker, Covers of Dehn fillings on once-punctured tors bundles, Proc. Amer. Math. Soc, 105 (1989), 747-754.
  • [3] H. Bass, Groups of integral representation type, Pacific J. Math., 86 (1980), 15-51.
  • [4] F. Bonahon, Bouts des varieties hyperbolique de dimension 3, Annals of Math., 124 (1986), 71-158.
  • [5] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. ScuolaNorm. Sup. Pisa, 8 (1981), 1-33.
  • [6] A. Borel, Cohomologie de sous-groupes discrets et representationsde groupes semi-simples, Asterisque, 32-33 (1976), 73-112.
  • [7] M. Culler, W. Jaco and H. Rubinstein, Incompressible surfaces in once punctured torus bundles, Proc. London Math. Soc, 45 (1982), 385-419.
  • [8] D. Gabai, On 3-manifolds finitely covered by suface bundles. In Low- dimensional Topology and Kleinian Groups, Ed. D. B. A. Epstein, Lon- don Math. Soc. Lecture Note Series, 112 (1986), 145-155.
  • [9] J. Hass, Surfaces minimizing area in their homology class and group ac- tions on 3-manifolds, Math. Zeit., 199 (1988), 501-509.
  • [10] J. Hempel, 3-Manifolds, Annals of Math. Study 86, Princeton University Press.
  • [11] J. Hempel, Orientation reversing involutions and the first betti number for finite coverings of 3-manifolds, Invent. Math., 67 (1982), 133-142.
  • [12] J. Hempel, Coverings of Dehn fillings of surface bundles I, & II, Topology and its Appl., 24 (1986), 157-170, ibid. 26 (1987), 163-173.
  • [13] H. M. Hilden, M. T. Lozano and J-M. Montesinos, Arithmeticityof fig- ure eight knot orbifolds, in Topology'90, Proceedings of the Research Semester in Low-Dimensional Topology at Ohio State University, De Gruyter Verlag, 1992.
  • [14] H. M. Hilden, M. T. Lozano and J-M. Montesinos, A characterization of arithmetic subgroups o/SX(2,R) and SL(2,C),preprint.
  • [15] C. D. Hodgson, Ph. D Thesis, Princeton University, 1986.
  • [16] T. J0rgenson, On pairs of once punctured tori, preprint.
  • [17] T. J0rgenson, Compact 3-manifolds of constant negative curvature fiber- ing over the circle, Annals of Math., 106 (1977), 61-72.
  • [18] D. D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc, 19 (1987), 481-484.
  • [19] C. Maclachlan and A. W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc, 102 (1987), 251-257.
  • [20] W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic 3-manifolds, in Topology'90, Proceedings of the Research Semester in Low-Dimensional Topology at Ohio State University, De Gruyter Verlag, 1992.
  • [21] W. D. Neumann and A. W. Reid, Amalgamation and the invariant-trace field of a Kleinian group, Math. Proc. Camb. Phil. Soc, 109 (1991), 509-515.
  • [22] A. W. Reid, Ph. D Thesis, University of Aberdeen, 1987.
  • [23] T. Soma, Virtual fibers in hyperbolic 3-manifolds, Topology and its Appl., 41 (1991), 179-192.
  • [24] T. Soma, Virtual fiber groups in 3-manifold groups, J. London Math. Soc, 43 (2) (1991), 337-354.
  • [25] J. Stallings, On fibering certain 3-manifolds, in Toplogy of 3-Manifolds Ed. M. Fort Jr., 95-100, Prentice-Hall 1962.
  • [26] K. Takeuchi, ArithmeticFuchsiangroups of signature(l e), J. Math. Soc Japan, 35 (1981), 381-407.
  • [27] W. P. Thurston, The Geometry and Topology of 3-Manifolds,Mimeo- graphed lecture notes, Princeton University, 1977.
  • [28] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hy- perbolic geometry, Bull. Amer. Math. Soc, 6 (1982), 357-381.
  • [29] W. P. Thurston, Hyperbolic structures on S-manifolds II: surface groups and 3-manifolds that fiber of the circle, to appear Annals of Math.
  • [30] W. P. Thurston, A norm for the homology of S-manifolds, Memoirs of the Amer. Math. Soc, 339 (1986), 99-130.
  • [31] M-F. Vigneras, Arithmetique des Algebresde Quaternions. L. N. M 800, Springer-Verlag 1980.
  • [32] J. Weeks, Snapped, Version 5/18/92, A program for the Macintosh to compute hyperbolic structures on 3-manifolds, Available upon request from J. Weeks.