Pacific Journal of Mathematics

Essential laminations and Haken normal form.

Mark Brittenham

Article information

Source
Pacific J. Math. Volume 168, Number 2 (1995), 217-234.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620559

Mathematical Reviews number (MathSciNet)
MR1339951

Zentralblatt MATH identifier
0838.57011

Subjects
Primary: 57N10: Topology of general 3-manifolds [See also 57Mxx]
Secondary: 57R30: Foliations; geometric theory

Citation

Brittenham, Mark. Essential laminations and Haken normal form. Pacific J. Math. 168 (1995), no. 2, 217--234.https://projecteuclid.org/euclid.pjm/1102620559


Export citation

References

  • [1] M. Brittenham, Essential Laminations in Seifert-fibered Spaces, Topol- ogy, 32 no. 1 (1993), 61-85.
  • [2] M. Brittenham, Essential laminations and Haken normal form: regular cell de- compositions, preprint.
  • [3] M. Brittenham, Essential laminations and Haken normal form: laminations with no holonomy, to appear in Communications in Analysis and Geometry.
  • [4] W. Claus, Essential laminations in closed Seifert-fibered spaces, Thesis, University of Texas at Austin, 1991.
  • [5] W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology, 23 no. 1 (1984) 117-125.
  • [6] D. Gabai, Foliations Transverse to Laminations in 3-manifolds, in prepa- ration.
  • [7] D. Gabai and U. Oertel, Essential Laminationsin 3-manifolds, Annals of Math., 130 (1989), 41-73.
  • [8] W. Haken, Theorie der Normalflaschen, Acta. Math., 105 (1961), 245- 375.
  • [9] A. Hatcher, Measured Laminations in 3-anifolds, preprint.
  • [10] W. Jaco and U. Oertel, An Algorithm to Determine if a S-manifold is a Haken Manifold, Topology, 23 (1984), 195-209.
  • [11] H. Schubert, Bestimmung der Primfaktorzerlegung vonVerkettungen, Math. Zeit., 76 (1961), 116-148.