Pacific Journal of Mathematics

$v_1$-periodic homotopy groups of ${\rm Sp}(n)$.

Martin Bendersky, Donald M. Davis, and Mark Mahowald

Article information

Source
Pacific J. Math., Volume 170, Number 2 (1995), 319-378.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102370874

Mathematical Reviews number (MathSciNet)
MR1363868

Zentralblatt MATH identifier
0851.55021

Subjects
Primary: 55Q52: Homotopy groups of special spaces
Secondary: 55T99: None of the above, but in this section 57T20: Homotopy groups of topological groups and homogeneous spaces

Citation

Bendersky, Martin; Davis, Donald M.; Mahowald, Mark. $v_1$-periodic homotopy groups of ${\rm Sp}(n)$. Pacific J. Math. 170 (1995), no. 2, 319--378. https://projecteuclid.org/euclid.pjm/1102370874


Export citation

References

  • [1] J. F. Adams, Lectures on generalized cohomology, Springer-Verlag Lecture Notes in Math., 99 (1969), 1-138.
  • [2] S. Araki, Multiplicative operations in BP cohomology, Osaka Jour.Math., 12 (1975), 343-356.
  • [3] M. Bendersky, Some calculations in the unstable Adams-Novikov spectral sequence, Publ. RIMS, 16 (1980), 529-542.
  • [4] M. Bendersky, The vi-periodic unstable Novikov spectral sequence, Topology, 31 (1992), 47-64.
  • [5] M. Bendersky, The derived functors of the primitives for tfP^S271"1"1), Trans. Amer. Math. Soc, 276 (1983), 599-619.
  • [6] M. Bendersky, Unstable towers in the odd primary homotopy groups of spheres, Trans. Amer. Math. Soc, 287 (1985), 529-542.
  • [7] M. Bendersky, E. B. Curtis, and H. R. Miller, The unstable Adams spectral sequence for generalized homology, Topology, 17 (1978), 229-248.
  • [8] M. Bendersky, E. B. Curtis, and D. C. Ravenel, EHP sequences in BP theory, Topology, 21 (1982), 373-391.
  • [9] M. Bendersky and D. M. Davis, 2-primary v\ -periodic homotopy groups of SU(n), Amer. Jour. Math., 114 (1991), 465-494.
  • [10] M. Bendersky and D. M. Davis, The unstable Novikov spectral sequence for Sp(), and the power series sinh~1(x), Proc. Adams. Symposium, London Math. Soc. Lecture Note Series, 176 (1992), 55-72.
  • [11] M. C. Crabb and K. Knapp, James numbers, Math. Ann., 282 (1988), 395-422.
  • [12] M. C. Crabb and K. Knapp, The Hurewicz map on stunted complex protective spaces, Amer. Jour. Math., 110 (1988), 783-809.
  • [13] D. M. Davis, -periodic homotopy groups of SU(n) at an odd prime, Proc. London Math. Soc, 43 (1991), 529-544.
  • [14] D. M. Davis, The cohomology of the spectrum bJ, Bol. Soc. Math. Mex., 20 (1975), 6-11.
  • [15] D. M. Davis and M. Mahowald, Some remarks on vi-periodic homotopy groups, Proc. Adams Symposium, London Math. Soc. Lecture Note Series, 176 (1992), 55-72.
  • [16] D. M. Davis and M. Mahowald, vi-periodic homotopy groups of Sp(2), Sp(3), and S2n,Springer-Verlag Lecture Notes in Math., 1418 (1990), 219-237.
  • [17] D. M. Davis and M. Mahowald, Homotopy groups of some mapping telescopes, Annals of Math. Studies, 113 (1987), 126-151.
  • [18] D. M. Davis and M. Mahowald, v -localizations of finite torsion spectra and spherically resolved spaces, Topology, 32 (1993), 543-550.
  • [19] D. M. Davis and M. Mahowald, v\-periodicity in the unstable Adams spectral sequence, Math. Zeit., 204 (1990), 319-339.
  • [20] M. Hazewinkel, Formal groups and applications, Academic Press (1978).
  • [21] M. J. Hopkins, Stable decompositions of certain loop spaces, thesis, Northwestern University (1984).
  • [22] D. Husemoller, The structure of the Hopf algebraH*(BU) over a Z(py algebra, Amer. Jour. Math., 43 (1971), 329-349.
  • [23] I. M. James, The topology of Stiefel manifolds, London Math, Society Lecture Notes Series, 24 (1976).
  • [24] A. Kono and K. Kozima, Space of loops on a symplectic group, Japan Jour. Math., 4 (1978) ,461-486.
  • [25] M. Mahowald, The image of J in the EHP sequence, Annals of Math., 116 (1982), 65-112.
  • [26] K. Morisugi, Homotopy groups of symplectic groups and the quaternionic James numbers, Osaka Jour. Math., 23 (1986), 867-880.
  • [27] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, (1986).
  • [28] D. C. Ravenel, The structure of BP*BP modulo an invariant prime ideal. Topology, 15 (1976), 149-153.
  • [29] D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, Jour. Pure. Appl. Algebra, 9 (1977), 241-280.
  • [30] D. C. Ravenel and W. S. Wilson, Bipolynomial Hopf algebras, Jour. Pure. Appl. Alg., 4 (1974), 41-45.
  • [31] F. Sigrist and U. Suter, Cross-sections of symplectic Stiefel manifolds Trans. Amer. Math. Soc, 184 (1973), 247-259.
  • [32] G. Walker, Estimates for the complex and quaternionic James numbers, Quar. Jour. Math. Oxford, 32 (1981), 467-489.
  • [33] W. S. Wilson, Brown-Peters on homology, an introduction and sampler, Regional Conference Series in Math, Amer. Math. Soc, 48 (1980).