Pacific Journal of Mathematics

Triangle subgroups of hyperbolic tetrahedral groups.

C. Maclachlan

Article information

Source
Pacific J. Math., Volume 176, Number 1 (1996), 195-203.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102352057

Mathematical Reviews number (MathSciNet)
MR1433988

Zentralblatt MATH identifier
0865.20031

Subjects
Primary: 20H15: Other geometric groups, including crystallographic groups [See also 51-XX, especially 51F15, and 82D25]
Secondary: 51F15: Reflection groups, reflection geometries [See also 20H10, 20H15; for Coxeter groups, see 20F55] 57M50: Geometric structures on low-dimensional manifolds

Citation

Maclachlan, C. Triangle subgroups of hyperbolic tetrahedral groups. Pacific J. Math. 176 (1996), no. 1, 195--203. https://projecteuclid.org/euclid.pjm/1102352057


Export citation

References

  • [1] T. Baskan and A.M. Macbeath, Centralisersof reflectionsin crystallographic groups, Math. Proc. Cam. Phil. Soc, 92 (1982), 79-91.
  • [2] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 1-33.
  • [3] T. Chinburg and E. Friedman, The smallest arithmetic hyperbolicthree -orbifold, Invent. Math., 86 (1986), 507-527.
  • [4] M.D.E. Conder and G. Martin, Cusps, triangle group and hyperbolic 3-folds, J. Austral. Math. Soc, 55 (1993), 149-182.
  • [5] F. Gehring and G. Martin, On the minimal volume hyperbolic Z-orbifold, Math. Research Letters, 1 (1994),107-114.
  • [6] F. Gehring, G. Martin and A.W. Reid, Arithmeticity, discreteness and volume, to appear.
  • [7] F. Gehring, C. Maclachlan, G. Martin and A.W. Reid, Simple elliptic axes in a Kleinian group,to appear.
  • [8] F. Lanner, On complexes with transitive groups of automorphisms, Comm. Sem. Math. Univ. Lund, 1950.
  • [9] C. Maclachlan and A.W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Cam. Phil. Soc, 102 (1987), 251-257.
  • [10] C. Maclachlan and A.W. Reid, The arithmetic structure of tetrahedral groups of hyperbolic isometries, Mathematika, 36 (1989), 221-240,
  • [11] W. Neumann and A.W. Reid, Arithmetic of hyperbolic manifolds, Topology '90 Ed. B. Apanasov et al de Gruyter (1992), 273-310.
  • [12] A.W. Reid, Totally geodesicsurfaces in hyperbolic^-manifolds, Proc. Edin. Math. Soc, 34 (1991), 77-88.
  • [13] A.W. Reid, Arithmetic Kleinian groups and their Fuchsian subgroups,Ph. D. Thesis, Aberdeen University, 1987.
  • [14] A.W. Reid, A note on trace fields of Kleinian groups, Bull. London Math. Soc, 22 (1990), 349-352.
  • [15] I. Reiner, Maximal Orders,Academic Press, 1975.
  • [16] K. Takeuchi, A characterisation of arithmetic Fuchsian groups, J. Math. Soc Japan, 27 (1975), 600-612.
  • [17] K. Takeuchi, Arithmetic triangle groups,J. Math. Soc Japan, 29 (1977), 91-106.
  • [18] K. Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac Sci. Univ. Tokyo, Sect. 1A, Math., 24 (1977), 201-212.
  • [19] M.-F. Vigneras, Arithmetique des algebresde quaternions, Lecture notes in Maths, 800, Springer-Verlag, 1980.
  • [20] E.B. Vinberg, Discrete groupsgeneratedby reflections in Lobachevskiispace,Math. Sb., 114 (1967), 429-444.