Proceedings of the Japan Academy, Series A, Mathematical Sciences

Analytic continuation of the multiple Fibonacci zeta functions

Sudhansu Sekhar Rout and Nabin Kumar Meher

Full-text: Open access


In this article, we prove the meromorphic continuation of the multiple Fibonacci zeta functions of depth 2: \begin{equation*} \sum_{0<n_{1}<n_{2}}\frac{1}{F_{n_{1}}^{s_{1}}F_{n_{2}}^{s_{2}}}, \end{equation*} where $F_{n}$ is the $n$-th Fibonacci number, $\mathop{\mathrm{Re}} (s_{1}) > 0$ and $\mathop{\mathrm{Re}} (s_{2}) > 0$. We compute a complete list of its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer arguments are rational.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 94, Number 6 (2018), 64-69.

First available in Project Euclid: 31 May 2018

Permanent link to this document

Digital Object Identifier

Primary: 11M99: None of the above, but in this section
Secondary: 11B39: Fibonacci and Lucas numbers and polynomials and generalizations 30D30: Meromorphic functions, general theory

Analytic continuation multiple Fibonacci zeta function poles and residues


Rout, Sudhansu Sekhar; Meher, Nabin Kumar. Analytic continuation of the multiple Fibonacci zeta functions. Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 6, 64--69. doi:10.3792/pjaa.94.64.

Export citation


  • S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), no. 2, 107–116.
  • R. André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 19, 539–541.
  • T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
  • T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189–209.
  • F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353–376.
  • K. Chandrasekharan, Introduction to analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 148, Springer-Verlag New York Inc., New York, 1968.
  • D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 140–142.
  • C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith. 130 (2007), no. 1, 37–60.
  • J. Mehta, B. Saha and G. K. Viswanadham, Analytic properties of multiple zeta functions and certain weighted variants, an elementary approach, J. Number Theory 168 (2016), 487–508.
  • L. Navas, Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001), no. 5, 409–418.
  • M. Ram Murty, The Fibonacci zeta function, in Automorphic representations and L-functions (Mumbai, 2012), 409–425, Tata Inst. Fundam. Res. Stud. Math., 22, Hindustan Book Agency, Gurgaon, 2013.
  • J. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1275–1283.