Proceedings of the Japan Academy, Series A, Mathematical Sciences

A $p$-analogue of Euler’s constant and congruence zeta functions

Nobushige Kurokawa and Yuichiro Taguchi

Full-text: Open access

Abstract

A $p$-analogue of a formula of Euler on the Euler constant is given, and it is interpreted in terms of the absolute zeta functions of tori.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 94, Number 2 (2018), 13-16.

Dates
First available in Project Euclid: 1 February 2018

Permanent link to this document
https://projecteuclid.org/euclid.pja/1517454032

Digital Object Identifier
doi:10.3792/pjaa.94.13

Subjects
Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$
Secondary: 11M35: Hurwitz and Lerch zeta functions 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72} 14G10: Zeta-functions and related questions [See also 11G40] (Birch- Swinnerton-Dyer conjecture)

Keywords
Euler constant $p$-analogue congruence zeta function absolute zeta function

Citation

Kurokawa, Nobushige; Taguchi, Yuichiro. A $p$-analogue of Euler’s constant and congruence zeta functions. Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 2, 13--16. doi:10.3792/pjaa.94.13. https://projecteuclid.org/euclid.pja/1517454032


Export citation

References

  • A. Connes and C. Consani, Schemes over $\mathbf{F}_{1}$ and zeta functions, Compos. Math. 146 (2010), no. 6, 1383–1415.
  • A. Deitmar, Remarks on zeta functions and $K$-theory over $\mathbf{F}_{1}$, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 141–146.
  • P. Erdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 63–66.
  • L. Euler, De numero memorabili in summatione progressionis harmonicae naturalis occurrente, Acta Academiae Scientiarum Imperialis Petropolitanae 5 (1785), 45–75. (E583, dated February 22, 1776, Collected Works I-15, 569–603).
  • L. Euler, Evolutio formulae integralis $\int\partial x(\frac{1}{1-x}+\frac{1}{lx})$ a termino $x=0$ usque ad $x=1$ extensae, Nova Acta Academiae Scientiarum Petropolitanae 4 (1789), 3–16. (E629, dated February 29, 1776, Collected Works I-18, 318–334).
  • H. Hasse, Ein Summierungsverfahren für die Riemannsche $\xi$-Reihe, Math. Z. 32 (1930), no. 1, 458–464.
  • N. Kurokawa, Zeta functions over $\mathbf{F}_{1}$, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180–184.
  • N. Kurokawa and H. Ochiai, Dualities for absolute zeta functions and multiple gamma functions, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 7, 75–79.
  • N. Kurokawa and H. Tanaka, Absolute zeta functions and the automorphy, Kodai Math. J. 40 (2017), no. 3, 584–614.
  • N. Kurokawa and M. Wakayama, On $q$-analogues of the Euler constant and Lerch's limit formula, Proc. Amer. Math. Soc. 132 (2004), no. 4, 935–943.
  • C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217–244.