Proceedings of the Japan Academy, Series A, Mathematical Sciences

Graded Lie algebras and regular prehomogeneous vector spaces with one-dimensional scalar multiplication

Nagatoshi Sasano

Full-text: Open access

Abstract

The aim of this paper is to study relations between regular reductive prehomogeneous vector spaces (PVs) with one-dimensional scalar multiplication and the structure of graded Lie algebras. We will show that the regularity of such PVs is described by an $\mathfrak{sl}_{2}$-triplet of a graded Lie algebra.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 93, Number 10 (2017), 124-128.

Dates
First available in Project Euclid: 30 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.pja/1512032606

Digital Object Identifier
doi:10.3792/pjaa.93.124

Mathematical Reviews number (MathSciNet)
MR3732902

Zentralblatt MATH identifier
06850987

Subjects
Primary: 11S90: Prehomogeneous vector spaces
Secondary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65] 17B70: Graded Lie (super)algebras

Keywords
Prehomogeneous vector spaces graded Lie algebras standard pentads

Citation

Sasano, Nagatoshi. Graded Lie algebras and regular prehomogeneous vector spaces with one-dimensional scalar multiplication. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 10, 124--128. doi:10.3792/pjaa.93.124. https://projecteuclid.org/euclid.pja/1512032606


Export citation

References

  • V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija 2 (1968), no. 6. 1271–1311.
  • H. Rubenthaler, Espaces préhomogènes de type parabolique, in Lectures on harmonic analysis on Lie groups and related topics (Strasbourg, 1979), 189–221, Lectures in Math., 14, Kinokuniya Book Store, Tokyo, 1982.
  • H. Rubenthaler, Minimal graded Lie algebras and representations of quadratic algebras, J. Algebra 473 (2017), 29–65.
  • N. Sasano, Lie algebras associated with a standard quadruplet and prehomogeneous vector spaces, Tsukuba J. Math. 39 (2015), no. 1, 1–14.
  • N. Sasano, Lie algebras constructed with Lie modules and their positively and negatively graded modules, Osaka J. Math. 54 (2017), no. 3, 533–568.
  • N. Sasano, Reduced contragredient Lie algebras and PC Lie algebras, arXiv:1607.07546.
  • M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155.
  • M. Sato, M. Kashiwara, T. Kimura and T. Oshima, Micro-local analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980/81), no. 1, 117–179.