Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the distribution of rank two $\tau$-congruent numbers

Chad Tyler Davis

Full-text: Open access


A positive integer $n$ is the area of a Heron triangle if and only if there is a non-zero rational number $\tau$ such that the elliptic curve \begin{equation*} E_{τ}^{(n)}: Y^{2} = X(X-nτ)(X+nτ^{-1}) \end{equation*} has a rational point of order different than two. Such integers $n$ are called $\tau$-congruent numbers. In this paper, we show that for a given positive integer $p$, and a given non-zero rational number $\tau$, there exist infinitely many $\tau$-congruent numbers in every residue class modulo $p$ whose corresponding elliptic curves have rank at least two.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 93, Number 5 (2017), 37-40.

First available in Project Euclid: 29 April 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14H52: Elliptic curves [See also 11G05, 11G07, 14Kxx]
Secondary: 11G05: Elliptic curves over global fields [See also 14H52]

Elliptic curve $\tau$-congruent number rank


Davis, Chad Tyler. On the distribution of rank two $\tau$-congruent numbers. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 5, 37--40. doi:10.3792/pjaa.93.37.

Export citation


  • M. A. Bennett, Lucas' square pyramid problem revisited, Acta Arith. 105 (2002), no. 4, 341–347.
  • J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), no. 3, 105–108.
  • J. S. Chahal, Congruent numbers and elliptic curves, Amer. Math. Monthly 113 (2006), no. 4, 308–317.
  • H. Cohen, Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, 239, Springer, New York, 2007.
  • C. T. Davis and B. K. Spearman, On the distribution of $\tau$-congruent numbers, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 7, 101–103.
  • E. H. Goins and D. Maddox, Heron triangles via elliptic curves, Rocky Mountain J. Math. 36 (2006), no. 5, 1511–1526.
  • C. L. Siegel, Über einige Anwendungen diophantischer Approximationen [reprint of Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1, 1–41], in On some applications of Diophantine approximations, Quad./Monogr., 2, Ed. Norm., Pisa, 2014, pp. 81–138.
  • J. H. Silverman and J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.