Proceedings of the Japan Academy, Series A, Mathematical Sciences

Escape rate of the Brownian motions on hyperbolic spaces

Yuichi Shiozawa

Full-text: Open access

Abstract

We discuss the escape rate of the Brownian motion on a hyperbolic space. We point out that the escape rate is determined by using the Brownian expression of the radial part and a generalized Kolmogorov’s test for the one dimensional Brownian motion.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 93, Number 4 (2017), 27-29.

Dates
First available in Project Euclid: 31 March 2017

Permanent link to this document
https://projecteuclid.org/euclid.pja/1490947210

Digital Object Identifier
doi:10.3792/pjaa.93.27

Subjects
Primary: 60G17: Sample path properties
Secondary: 58J65: Diffusion processes and stochastic analysis on manifolds [See also 35R60, 60H10, 60J60] 60F20: Zero-one laws

Keywords
Escape rate Brownian motion hyperbolic space

Citation

Shiozawa, Yuichi. Escape rate of the Brownian motions on hyperbolic spaces. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 4, 27--29. doi:10.3792/pjaa.93.27. https://projecteuclid.org/euclid.pja/1490947210


Export citation

References

  • A. Bendikov and L. Saloff-Coste, On the regularity of sample paths of sub-elliptic diffusions on manifolds, Osaka J. Math. 42 (2005), no. 3, 677–722.
  • A. Grigor'yan, Escape rate of Brownian motion on Riemannian manifolds, Appl. Anal. 71 (1999), no. 1–4, 63–89.
  • A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249.
  • A. Grigor'yan and E. Hsu, Volume growth and escape rate of Brownian motion on a Cartan-Hadamard manifold, in Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2009, pp. 209–225.
  • E. P. Hsu, Stochastic analysis on manifolds, Graduate Studies in Mathematics, 38, Amer. Math. Soc., Providence, RI, 2002.
  • E. P. Hsu and G. Qin, Volume growth and escape rate of Brownian motion on a complete Riemannian manifold, Ann. Probab. 38 (2010), no. 4, 1570–1582.
  • K. Ichihara, Comparison theorems for Brownian motions on Riemannian manifolds and their applications, J. Multivariate Anal. 24 (1988), no. 2, 177–188.
  • K. Ito and H. P. McKean, Jr., Diffusion processes and their sample paths, Springer, Berlin, 1974.
  • S. Keprta, Integral tests for Brownian motion and some related processes, 1997. (Ph.D. Thesis, Carleton University, Canada). http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf
  • S. Keprta, Integral tests for some processes related to Brownian motion, in Asymptotic methods in probability and statistics (Ottawa, ON, 1997), 253–279, North-Holland, Amsterdam, 1998.
  • S. Ouyang, Volume growth and escape rate of symmetric diffusion processes, Stochastics 88 (2016), no. 3, 353–372.