Proceedings of the Japan Academy, Series A, Mathematical Sciences

Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces

Alexander Igorevich Bufetov and Tomoyuki Shirai

Full-text: Open access


In this note, we show that determinantal point processes on the real line corresponding to de Branges spaces of entire functions are rigid in the sense of Ghosh-Peres and, under certain additional assumptions, quasi-invariant under the group of diffeomorphisms of the line with compact support.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 93, Number 1 (2017), 1-5.

First available in Project Euclid: 27 December 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G55: Point processes 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32]
Secondary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52)

Quasi-symmetries rigidity determinantal point process (DPP) de Branges space


Bufetov, Alexander Igorevich; Shirai, Tomoyuki. Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 1, 1--5. doi:10.3792/pjaa.93.1.

Export citation


  • A. I. Bufetov, Quasi-symmetries of determinantal point processes, arXiv:1409.2068.
  • A. I. Bufetov, Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel, Bull. Math. Sci. 6 (2016), no. 1, 163–172.
  • A. I. Bufetov, Conditional measures of determinantal point processes, arXiv:1605.01400.
  • A. I. Bufetov and Y. Qiu, Determinantal point processes associated with Hilbert spaces of holomorphic functions, arXiv:1411.4951.
  • L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs, NJ, 1968.
  • H. Dym, An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type, Advances in Math. 5 (1970), 395–471.
  • H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York, 1976.
  • S. Ghosh, Determinantal processes and completeness of random exponentials: the critical case, Probab. Theory Related Fields 163 (2015), no. 3–4, 643–665.
  • S. Ghosh and Y. Peres, Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, arXiv:1211.2381. (to appear in Duke Math. J.).
  • J. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal processes and independence, Probab. Surv. 3 (2006), 206–229.
  • R. Lyons, Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 167–212.
  • O. Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83–122.
  • G. Olshanski, The quasi-invariance property for the Gamma kernel determinantal measure, Adv. Math. 226 (2011), no. 3, 2305–2350.
  • H. Osada and T. Shirai, Absolute continuity and singularity of Palm measures of the Ginibre point process, Probab. Theory Related Fields 165 (2016), no. 3–4, 725–770.
  • M. Reed and B. Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, New York, 1980.
  • T. Shirai and Y. Takahashi, Fermion process and Fredholm determinant, in Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 15–23, Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht, 2000.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), no. 2, 414–463.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties, Ann. Probab. 31 (2003), no. 3, 1533–1564.
  • A. Soshnikov, Determinant random point fields. (Russian) Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107–160; translation in Russian Math. Surveys 55 (2000), no. 5, 923–975.