Proceedings of the Japan Academy, Series A, Mathematical Sciences

Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces

Alexander Igorevich Bufetov and Tomoyuki Shirai

Full-text: Open access

Abstract

In this note, we show that determinantal point processes on the real line corresponding to de Branges spaces of entire functions are rigid in the sense of Ghosh-Peres and, under certain additional assumptions, quasi-invariant under the group of diffeomorphisms of the line with compact support.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 93, Number 1 (2017), 1-5.

Dates
First available in Project Euclid: 27 December 2016

Permanent link to this document
https://projecteuclid.org/euclid.pja/1482829229

Digital Object Identifier
doi:10.3792/pjaa.93.1

Subjects
Primary: 60G55: Point processes 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32]
Secondary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52)

Keywords
Quasi-symmetries rigidity determinantal point process (DPP) de Branges space

Citation

Bufetov, Alexander Igorevich; Shirai, Tomoyuki. Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces. Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 1, 1--5. doi:10.3792/pjaa.93.1. https://projecteuclid.org/euclid.pja/1482829229.


Export citation

References

  • A. I. Bufetov, Quasi-symmetries of determinantal point processes, arXiv:1409.2068.
  • A. I. Bufetov, Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel, Bull. Math. Sci. 6 (2016), no. 1, 163–172.
  • A. I. Bufetov, Conditional measures of determinantal point processes, arXiv:1605.01400.
  • A. I. Bufetov and Y. Qiu, Determinantal point processes associated with Hilbert spaces of holomorphic functions, arXiv:1411.4951.
  • L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs, NJ, 1968.
  • H. Dym, An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type, Advances in Math. 5 (1970), 395–471.
  • H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press, New York, 1976.
  • S. Ghosh, Determinantal processes and completeness of random exponentials: the critical case, Probab. Theory Related Fields 163 (2015), no. 3–4, 643–665.
  • S. Ghosh and Y. Peres, Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues, arXiv:1211.2381. (to appear in Duke Math. J.).
  • J. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal processes and independence, Probab. Surv. 3 (2006), 206–229.
  • R. Lyons, Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 167–212.
  • O. Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83–122.
  • G. Olshanski, The quasi-invariance property for the Gamma kernel determinantal measure, Adv. Math. 226 (2011), no. 3, 2305–2350.
  • H. Osada and T. Shirai, Absolute continuity and singularity of Palm measures of the Ginibre point process, Probab. Theory Related Fields 165 (2016), no. 3–4, 725–770.
  • M. Reed and B. Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, New York, 1980.
  • T. Shirai and Y. Takahashi, Fermion process and Fredholm determinant, in Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 15–23, Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht, 2000.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), no. 2, 414–463.
  • T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties, Ann. Probab. 31 (2003), no. 3, 1533–1564.
  • A. Soshnikov, Determinant random point fields. (Russian) Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107–160; translation in Russian Math. Surveys 55 (2000), no. 5, 923–975.