Proceedings of the Japan Academy, Series A, Mathematical Sciences

Euler products beyond the boundary for Selberg zeta functions

Shin-ya Koyama and Fumika Suzuki

Full-text: Open access

Abstract

Convergence of Euler products in the critical strip is directly related to a proof of the generalized Riemann hypothesis. Moreover its behavior on the critical line is called the deep Riemann hypothesis (DRH). Kimura-Koyama-Kurokawa recently proved DRH over function fields in case the $L$-function is regular at $s=1$ [3]. In this paper we generalize their results to Selberg zeta functions. Our results imply the DRH for principal congruence groups over function fields.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 90, Number 8 (2014), 101-106.

Dates
First available in Project Euclid: 3 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.pja/1412341992

Digital Object Identifier
doi:10.3792/pjaa.90.101

Mathematical Reviews number (MathSciNet)
MR3266742

Zentralblatt MATH identifier
1259.35175

Subjects
Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Keywords
Selberg zeta functions Riemann hypothesis Euler products

Citation

Koyama, Shin-ya; Suzuki, Fumika. Euler products beyond the boundary for Selberg zeta functions. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 8, 101--106. doi:10.3792/pjaa.90.101. https://projecteuclid.org/euclid.pja/1412341992


Export citation

References

  • S. Akagawa, On Selberg zeta functions for modular groups over function fields, (1978). (Master thesis, the University of Tokyo).
  • H. Akatsuka, The Euler product for the Riemann zeta-function in the critical strip. (Preprint).
  • K. Conrad, Partial Euler products on the critical line, Canad. J. Math. 57 (2005), no. 2, 267–297.
  • T. Kimura, S. Koyama and N. Kurokawa, Euler products beyond the boundary, Letters in Math. Phys, arxiv:1210.1216.
  • S. Koyama, Selberg zeta functions and Ruelle operators for function fields, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 8, 255–259.
  • S. Koyama, Selberg zeta functions for PSL and PGL over function fields, in Number theory and its applications, edited by S. Kanemitsu and K. Gyory, Developments in Mathematics, Vol. 2, Springer, New York, 1999, pp. 253–261.
  • C. Lownes, Deep Riemann hypothesis for $GL(n)$. (Preprint).
  • H. Nagoshi, Selberg zeta functions over function fields, J. Number Theory 90 (2001), no. 2, 207–238.