Proceedings of the Japan Academy, Series A, Mathematical Sciences

Fundamental groups of join-type curves — achievements and perspectives

Christophe Eyral and Mutsuo Oka

Full-text: Open access

Abstract

The aim of this survey article is to bring together recent advances concerning the fundamental groups of join-type curves. Though the paper is of purely expository nature, we do also announce a new result.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 90, Number 2 (2014), 43-47.

Dates
First available in Project Euclid: 30 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.pja/1391091382

Digital Object Identifier
doi:10.3792/pjaa.90.43

Mathematical Reviews number (MathSciNet)
MR3161545

Zentralblatt MATH identifier
1286.14044

Subjects
Primary: 14H30: Coverings, fundamental group [See also 14E20, 14F35] 14H20: Singularities, local rings [See also 13Hxx, 14B05] 14H45: Special curves and curves of low genus 14H50: Plane and space curves

Keywords
Join-type curves fundamental groups

Citation

Eyral, Christophe; Oka, Mutsuo. Fundamental groups of join-type curves — achievements and perspectives. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 2, 43--47. doi:10.3792/pjaa.90.43. https://projecteuclid.org/euclid.pja/1391091382


Export citation

References

  • P. Deligne, Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton), in Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., 842, Springer, Berlin, 1981, pp. 1–10.
  • C. Eyral and M. Oka, Fundamental groups of join-type sextics via dessins d'enfants, Proc. Lond. Math. Soc. (3) 107 (2013), no. 1, 76–120.
  • C. Eyral and M. Oka, Classification of the fundamental groups of join-type curves of degree seven, J. Math. Soc. Japan. (to appear).
  • C. Eyral and M. Oka, On the fundamental groups of non-generic R-join-type curves, Experimental and Theoretical Methods in Algebra, Geometry and Topology, Springer Proceedings in Mathematics & Statistics. (to appear).
  • W. Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407–409.
  • E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), no. 1, 255–260.
  • M. V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305–344.
  • M. Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978), no. 4, 579–597.
  • O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), no. 2, 305–328.