Proceedings of the Japan Academy, Series A, Mathematical Sciences

A second-order time-discretization scheme for a system of nonlinear Schrödinger equations

Takiko Sasaki

Full-text: Open access

Abstract

We study a linear semidiscrete-in-time finite difference method for the system of nonlinear Schrödinger equations that is a model of the interaction of non-relativistic particles with different masses. The main aim is to show that the scheme is second-order convergent.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 90, Number 1 (2014), 15-20.

Dates
First available in Project Euclid: 6 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.pja/1389017410

Digital Object Identifier
doi:10.3792/pjaa.90.15

Mathematical Reviews number (MathSciNet)
MR3161540

Zentralblatt MATH identifier
1295.65087

Subjects
Primary: 65G99: None of the above, but in this section
Secondary: 65M06: Finite difference methods 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Keywords
Time-discretization finite difference method nonlinear Schrödinger equation error analysis

Citation

Sasaki, Takiko. A second-order time-discretization scheme for a system of nonlinear Schrödinger equations. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 1, 15--20. doi:10.3792/pjaa.90.15. https://projecteuclid.org/euclid.pja/1389017410


Export citation

References

  • C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 42 (2004), no. 3, 934–952 (electronic).
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York Univ., Courant Inst. Math. Sci., New York, 2003.
  • D. Furihata and T. Matsuo, Discrete variational derivative method, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC, Boca Raton, FL, 2011.
  • N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl. 3 (2011), no. 3, 415–426.