Proceedings of the Japan Academy, Series A, Mathematical Sciences

Affine translation surfaces in Euclidean 3-space

Huili Liu and Yanhua Yu

Full-text: Open access

Abstract

In this paper we define affine translation surface and classify minimal affine translation surfaces in three dimensional Euclidean space.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 89, Number 9 (2013), 111-113.

Dates
First available in Project Euclid: 30 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.pja/1383138415

Digital Object Identifier
doi:10.3792/pjaa.89.111

Mathematical Reviews number (MathSciNet)
MR3127928

Zentralblatt MATH identifier
1287.53004

Subjects
Primary: 53A05: Surfaces in Euclidean space 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42] 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Keywords
Translation surface mean curvature minimal surface

Citation

Liu, Huili; Yu, Yanhua. Affine translation surfaces in Euclidean 3-space. Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 9, 111--113. doi:10.3792/pjaa.89.111. https://projecteuclid.org/euclid.pja/1383138415


Export citation

References

  • W. Blaschke, Vorlesungen über Differentialgeometrie I, Springer, Berlin, 1921.
  • W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923.
  • W. Blaschke, Vorlesungen über Differentialgeometrie III, Springer, Berlin, Heidelberg, New York, 1929.
  • A. M. Li, U. Simon and G. S. Zhao, Global affine differential geometry of hypersurfaces, de Gruyter Expositions in Mathematics, 11, de Gruyter, Berlin, 1993.
  • K. Kenmotsu, Surfaces with constant mean curvature, translated from the 2000 Japanese original by Katsuhiro Moriya and revised by the author, Translations of Mathematical Monographs, 221, Amer. Math. Soc., Providence, RI, 2003.
  • K. Kenmotsu, Surfaces of revolution with periodic mean curvature, Osaka J. Math. 40 (2003), no. 3, 687–696.
  • U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, Sci. Univ. Tokyo, Tokyo, 1991.