Proceedings of the Japan Academy, Series A, Mathematical Sciences

Bochner-Schoenberg-Eberlein property for abstract Segal algebras

Zeinab Kamali and Mahmood Lashkarizadeh Bami

Full-text: Open access

Abstract

Let $\mathcal{A}$ be a BSE Banach algebra and $\mathcal{B}$ be an essential abstract Segal algebra with respect to $\mathcal{A}$. In this paper we present a necessary and sufficient condition for $\mathcal{B}$ to be a BSE algebra as well. Furthermore we study BSE property of some certain abstract Segal algebras which are not discussed in previous works.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 89, Number 9 (2013), 107-110.

Dates
First available in Project Euclid: 30 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.pja/1383138414

Digital Object Identifier
doi:10.3792/pjaa.89.107

Mathematical Reviews number (MathSciNet)
MR3127927

Zentralblatt MATH identifier
1301.46028

Subjects
Primary: 46Jxx: Commutative Banach algebras and commutative topological algebras [See also 46E25]
Secondary: 22D15: Group algebras of locally compact groups

Keywords
Abstract Segal algebra BSE algebra $\Delta$-weak bounded approximate identity

Citation

Kamali, Zeinab; Lashkarizadeh Bami, Mahmood. Bochner-Schoenberg-Eberlein property for abstract Segal algebras. Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 9, 107--110. doi:10.3792/pjaa.89.107. https://projecteuclid.org/euclid.pja/1383138414


Export citation

References

  • J. Arhippainen and J. Kauppi, Generalization of the $B^{*}$-algebra $(C_{0}(X),\|\phantom{0}\|_{\infty})$, Math. Nachr. 282 (2009), no. 1, 7–15.
  • S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40 (1934), no. 4, 271–276.
  • J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551–555.
  • D. H. Dunford, Segal algebras and left normed ideals, J. London Math. Soc. (2) 8 (1974), 514–516.
  • P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.
  • W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465–468.
  • F. Ghahramani and A. T. M. Lau, Weak amenability of certain classes of Banach algebras without bounded approximate identities, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371.
  • J. Inoue and S.-E. Takahasi, Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 257–271.
  • B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), no. 3, 281–284.
  • C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math. 72 (1977), no. 1, 99–104.
  • Z. Kamali, M. Lashkarizadeh Bami, The multiplier algebra and BSE property of direct sum of Banach Algebras, Bull. Aust. Math. Soc. 88 (2013), no. 2, 250–258.
  • E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4331–4356.
  • J. Kauppi and M. Mathieu, $C^{*}$-Segal algebras with order unit, J. Math. Anal. Appl. 398 (2013), no. 2, 785–797.
  • H. E. Krogstad, Multipliers of Segal algebras, Math. Scand. 38 (1976), no. 2, 285–303.
  • R. Larsen, An introduction to the theory of multipliers, Springer, New York, 1971.
  • H. S. Mustafayev, Segal algebra as an ideal in its second dual space, Turkish J. Math. 23 (1999), no. 2, 323–332.
  • W. Rudin, Fourier analysis on groups, Wiley Interscience, New York, 1984.
  • I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc. 40 (1934), no. 4, 277–278.
  • S. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type-theorem, Proc. Amer. Math. Soc. 110 (1990), no. 1, 149–158.
  • S. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japon. 37 (1992), no. 4, 607–614.