Proceedings of the Japan Academy, Series A, Mathematical Sciences

On Kaufhold’s Whittaker functions

Shinji Niwa

Full-text: Open access

Abstract

In this paper we give an integral representation for a Whittaker function of an non holomorphic Eisenstein series which is a non holomorphic Sigel modular form of degree 2. Our integral representation is very useful to the theory of the theta lifting of automorphic forms.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 88, Number 7 (2012), 103-108.

Dates
First available in Project Euclid: 6 July 2012

Permanent link to this document
https://projecteuclid.org/euclid.pja/1341579088

Digital Object Identifier
doi:10.3792/pjaa.88.103

Mathematical Reviews number (MathSciNet)
MR2946857

Zentralblatt MATH identifier
1276.11060

Subjects
Primary: 11F27: Theta series; Weil representation; theta correspondences 11F37: Forms of half-integer weight; nonholomorphic modular forms 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Keywords
Siegel modular theta correspondence generalized Whittaker functions

Citation

Niwa, Shinji. On Kaufhold’s Whittaker functions. Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 7, 103--108. doi:10.3792/pjaa.88.103. https://projecteuclid.org/euclid.pja/1341579088


Export citation

References

  • W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964.
  • I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, translated from the Russian, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, seventh edition, Elsevier/Academic Press, Amsterdam, 2007.
  • C. S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523.
  • G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann. 137 (1959), 454–476.
  • S. Niwa, On generalized Whittaker functions on Siegel's upper half space of degree 2, Nagoya Math. J. 121 (1991), 171–184.
  • G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), no. 3, 269–302.