Proceedings of the Japan Academy, Series A, Mathematical Sciences

A study of curvature using infinitesimals

Satoshi Koike, Tzee-Char Kuo, and Laurentiu Paunescu

Full-text: Open access

Abstract

Motivated by a profound observation of A’Campo we investigate the behaviour of the curvature of $f(z,w)=c, f\in \mathbf{C}\{z,w\}, |c|$ small, along infinitesimals. We use the language of infinitesimals as introduced in [2]. Along the way we introduce the important notion of gradient canyon, and prove several theorems in which this notion plays the key role. In this paper we give three such theorems and mention several other facts, to be published elsewhere.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 88, Number 5 (2012), 70-74.

Dates
First available in Project Euclid: 7 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.pja/1336394840

Digital Object Identifier
doi:10.3792/pjaa.88.70

Mathematical Reviews number (MathSciNet)
MR2925285

Zentralblatt MATH identifier
1250.30043

Subjects
Primary: 14HXX 32SXX 58K60: Deformation of singularities
Secondary: 58K40: Classification; finite determinacy of map germs

Keywords
Newton-Piuseux field curvature Lojasiewicz exponent gradient canyon Newton-Puiseux infinitesimals

Citation

Koike, Satoshi; Kuo, Tzee-Char; Paunescu, Laurentiu. A study of curvature using infinitesimals. Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 5, 70--74. doi:10.3792/pjaa.88.70. https://projecteuclid.org/euclid.pja/1336394840


Export citation

References

  • E. García Barroso and B. Teissier, Concentration multi-échelles de courbure dans des fibres de Milnor, Comment. Math. Helv. 74 (1999), no. 3, 398–418.
  • T.-C. Kuo and L. Paunescu, Equisingularity in $\mathbf{R}^{2}$ as Morse stability in infinitesimal calculus, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 6, 115–120.
  • T.-C. Kuo and L. Paunescu, Enriched Riemann sphere, Morse stability and equi-singularity in O$_{2}$, Jour. London Math. Soc. (to appear).
  • R. Langevin, Courbure et singularités complexes, Comment. Math. Helv. 54 (1979), no. 1, 6–16.
  • D. Siersma and M. Tibăr, The Gauss-Bonnet defect of complex affine hypersurfaces, Bull. Sci. Math. 130 (2006), no. 2, 110–122.
  • R. J. Walker, Algebraic curves, Dover, New York, 1962.
  • C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, 63, Cambridge Univ. Press, Cambridge, 2004.