Proceedings of the Japan Academy, Series A, Mathematical Sciences

Milnor $K$-groups modulo $p^{n}$ of a complete discrete valuation field

Toshiro Hiranouchi

Full-text: Open access

Abstract

For a mixed characteristic complete discrete valuation field $K$ which contains a $p^{n}$-th root of unity, we determine the graded quotients of the filtration on the Milnor $K$-groups $K_{q}^{M}(K)$ modulo $p^{n}$ in terms of differential forms of the residue field of $K$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 88, Number 4 (2012), 59-61.

Dates
First available in Project Euclid: 5 April 2012

Permanent link to this document
https://projecteuclid.org/euclid.pja/1333631994

Digital Object Identifier
doi:10.3792/pjaa.88.59

Mathematical Reviews number (MathSciNet)
MR2912843

Zentralblatt MATH identifier
1244.19002

Subjects
Primary: 19D45: Higher symbols, Milnor $K$-theory 19F15: Symbols and arithmetic [See also 11R37]

Keywords
Milnor $K$-groups complete discrete valuation field

Citation

Hiranouchi, Toshiro. Milnor $K$-groups modulo $p^{n}$ of a complete discrete valuation field. Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 4, 59--61. doi:10.3792/pjaa.88.59. https://projecteuclid.org/euclid.pja/1333631994


Export citation

References

  • S. Bloch and K. Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. No. 63 (1986), 107–152.
  • I. B. Fesenko, Class field theory of multidimensional local fields of characteristic $0$ with residue field of positive characteristic, (Russian) Algebra i Analiz 3 (1991), no. 3, 165–196; translation in St. Petersburg Math. J. 3 (1992), no. 3, 649–678.
  • I. B. Fesenko, Sequential topologies and quotients of Milnor $K$-groups of higher local fields, (Russian) Algebra i Analiz 13 (2001), no. 3, 198–221; translation in St. Petersburg Math. J. 13 (2002), no. 3, 485–501.
  • I. Fesenko, Topological Milnor $K$-groups of higher local fields, in Invitation to higher local fields (Münster, 1999), 61–74 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.
  • K. Kato, A generalization of local class field theory by using $K$-groups. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 2, 303–376.
  • K. Kato, A generalization of local class field theory by using $K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683.
  • K. Kato, A generalization of local class field theory by using $K$-groups. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 1, 31–43.
  • O. Izhboldin, $p$-primary part of the Milnor $K$-groups and Galois cohomologies of fields of characteristic $p$, in Invitation to higher local fields (Münster, 1999), 19–41 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.
  • M. Kurihara, On the structure of Milnor $K$-groups of certain complete discrete valuation fields, J. Théor. Nombres Bordeaux 16 (2004), no. 2, 377–401.
  • J. Nakamura, On the Milnor $K$-groups of complete discrete valuation fields, Doc. Math. 5 (2000), 151–200 (electronic).
  • J. Nakamura, On the structure of the Milnor $K$-groups of complete discrete valuation fields, in Invitation to higher local fields (Münster, 1999), 123–135 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000.
  • A. N. Parshin, Local class field theory, Trudy Mat. Inst. Steklov. 165 (1984), 143–170.
  • C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346–372.