Proceedings of the Japan Academy, Series A, Mathematical Sciences

The Caffarelli-Kohn-Nirenberg type inequalities involving critical and supercritical weights

Toshio Horiuchi and Peter Kumlin

Full-text: Open access

Abstract

The main purpose of this article is to establish the CKN-type inequalities for all $\alpha\in \mathbf{R}$ and to study the relating matters systematically. Roughly speaking, we shall discuss about the characterizations of the CKN-type inequalities for all $\alpha\in \mathbf{R}$ as the variational problems, the existence and nonexistence of the extremal solutions to these variational problems in proper spaces, the exact values and the assymptotic behaviors of the best constants $S(p,q,\alpha)$ and $C(p,q)$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 88, Number 1 (2012), 1-6.

Dates
First available in Project Euclid: 30 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.pja/1325264388

Digital Object Identifier
doi:10.3792/pjaa.88.1

Mathematical Reviews number (MathSciNet)
MR2872207

Zentralblatt MATH identifier
1267.46051

Subjects
Primary: 35J70: Degenerate elliptic equations
Secondary: 35J60: Nonlinear elliptic equations

Keywords
CKN-type inequality Hardy-Sobolev inequality weighted Hardy inequality degenerate elliptic equation best constant

Citation

Horiuchi, Toshio; Kumlin, Peter. The Caffarelli-Kohn-Nirenberg type inequalities involving critical and supercritical weights. Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 1, 1--6. doi:10.3792/pjaa.88.1. https://projecteuclid.org/euclid.pja/1325264388


Export citation

References

  • B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 23 (2005), no. 3, 327–345.
  • D. R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), no. 1, 73–94.
  • H. Ando and T. Horiuchi, Weighted Hardy inequalities with finitely many sharp missing terms. (in preparation).
  • H. Ando and T. Horiuchi, Missing terms in the weighted Hardy-Sobolev inequalities and its application. (to appear in J. Math. Kyoto Univ.).
  • L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275.
  • F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), no. 2, 229–258.
  • F. Catrina and Z.-Q. Wang, Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbf{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 2, 157–178.
  • J. García-Azorero, I. Peral and A. Primo, A borderline case in elliptic problems involving weights of Caffarelli-Kohn-Nirenberg type, Nonlinear Anal. 67 (2007), no. 6, 1878–1894.
  • T. Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ. 29 (1989), no. 3, 365–403.
  • T. Horiuchi, Best constant in weighted Sobolev inequality with weights being powers of distance from the origin, J. Inequal. Appl. 1 (1997), no. 3, 275–292.
  • T. Horiuchi and P. Kumlin, On the Caffarelli-Kohn-Nirenberg type inequalities involving critical and supercritical Weights. (to appear in J. Math. Kyoto Univ.).
  • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.
  • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.
  • P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45–121.
  • G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.