Proceedings of the Japan Academy
- Proc. Japan Acad.
- Volume 32, Number 8 (1956), 554-559.
Ideal theory of semiring
Full-text: Open access
Article information
Source
Proc. Japan Acad., Volume 32, Number 8 (1956), 554-559.
Dates
First available in Project Euclid: 20 November 2007
Permanent link to this document
https://projecteuclid.org/euclid.pja/1195525272
Digital Object Identifier
doi:10.3792/pja/1195525272
Mathematical Reviews number (MathSciNet)
MR0085244
Zentralblatt MATH identifier
0073.01902
Citation
Iséki, Kiyoshi. Ideal theory of semiring. Proc. Japan Acad. 32 (1956), no. 8, 554--559. doi:10.3792/pja/1195525272. https://projecteuclid.org/euclid.pja/1195525272
References
- [1] G. Birkhoff and 0. Frink: Representations of lattices by sets, Trans. Am. Math. Soc, 64, 299-316 (1948).Mathematical Reviews (MathSciNet): MR27263
Zentralblatt MATH: 0032.00504
Digital Object Identifier: doi:10.2307/1990504
JSTOR: links.jstor.org - [2] R. L. Blair: Ideal lattices and the structure of rings, Trans. Am. Math. Soc, 75, 136-153 (1953).Mathematical Reviews (MathSciNet): MR55974
Zentralblatt MATH: 0050.25903
Digital Object Identifier: doi:10.2307/1990782
JSTOR: links.jstor.org - [3] E. A. Behrens: Ein topologischer Beitrag zur Strukturtheorie nichtassoziativer Ringe, Math. Ann., 129, 297-303 (1955).Mathematical Reviews (MathSciNet): MR69153
Zentralblatt MATH: 0068.26201
Digital Object Identifier: doi:10.1007/BF01362373 - [4] E. A. Behrens: Zur topologischen Darstellung nichtassoziativer Ringe, Archiv der Math., 7, 41-48 (1956).Mathematical Reviews (MathSciNet): MR75192
Zentralblatt MATH: 0075.02702
Digital Object Identifier: doi:10.1007/BF01900522 - [5] L. Fuchs: Uber die Ideale arithmetischer Ringe, Comm. Math. Helv., 23, 334-341 (1949).Mathematical Reviews (MathSciNet): MR32583
Zentralblatt MATH: 0040.30103
Digital Object Identifier: doi:10.1007/BF02565607 - [6] K. Iseki: Une condition pour qu'une lattice soit distributif, C. R. Acad. Sci., Paris, 230, 1727-1728 (1950).
- [7] K. Iseki: Contributions to lattice theory, Publ. Math. Debrecen, 2, 194-203 (1952).
- [8] K. Iseki and Y. Miyanaga: Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad., 32, 325-328 (1956).Mathematical Reviews (MathSciNet): MR80284
Zentralblatt MATH: 0070.02803
Digital Object Identifier: doi:10.3792/pja/1195525375
Project Euclid: euclid.pja/1195525375 - [9] K. Iseki: Notes on topological spaces. V. On structure spaces of semiring, Proc. Japan Acad., 32, 426-429 (1956).Mathematical Reviews (MathSciNet): MR80285
Zentralblatt MATH: 0072.40302
Digital Object Identifier: doi:10.3792/pja/1195525309
Project Euclid: euclid.pja/1195525309 - [10] N. H. McCoy: Prime ideals in general rings, Am. Jour. Math., 71, 823-833 (1949).Mathematical Reviews (MathSciNet): MR32590
Zentralblatt MATH: 0035.01804
Digital Object Identifier: doi:10.2307/2372366
JSTOR: links.jstor.org - [11] A. A. Monteiro: L'Arithmetique des nitres et les espaces topologiques, Symposium sobre algunos problemes matematicos en Latino America, 129-162 (1954).
- [12] C. Pauc: Darstellungs und Struktursatze fur Boolesche Verbande und Verbande, Archiv der Math., 1, 29-41 (1948).Mathematical Reviews (MathSciNet): MR27743
Zentralblatt MATH: 0030.34703
Digital Object Identifier: doi:10.1007/BF02038204

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Prime and primary ideals in semirings
Lescot, Paul, Osaka Journal of Mathematics, 2015 - On the commutative algebra of categories
Berman, John D, Algebraic & Geometric Topology, 2018 - Ideal zero-divisor complex
Milošević, Nela and Petrović, Zoran Z., Journal of Commutative Algebra, 2017
- Prime and primary ideals in semirings
Lescot, Paul, Osaka Journal of Mathematics, 2015 - On the commutative algebra of categories
Berman, John D, Algebraic & Geometric Topology, 2018 - Ideal zero-divisor complex
Milošević, Nela and Petrović, Zoran Z., Journal of Commutative Algebra, 2017 - Order ideals, annihilator ideals and pathological behavior
Evans, E. Graham and Griffith, Phillip, Journal of Commutative Algebra, 2016 - Support varieties: an ideal approach
Buan, Aslak Bakke, Krause, Henning, and Solberg, Øyvind, Homology, Homotopy and Applications, 2007 - On a generalization of test ideals
Hara, Nobuo and Takagi, Shunsuke, Nagoya Mathematical Journal, 2004 - Duality for ideals of Lipschitz maps
Cabrera-Padilla, M. G., Chávez-Domínguez, J. A., Jiménez-Vargas, A., and Villegas-Vallecillos, Moisés, Banach Journal of Mathematical Analysis, 2017 - Group actions and rational ideals
Lorenz, Martin, Algebra & Number Theory, 2008 - Ideals of fiber type and polymatroids
Herzog, Jürgen, Hibi, Takayuki, and Vladoiu, Marius, Osaka Journal of Mathematics, 2005 - On $b$-function, spectrum and multiplier ideals
Saito, Morihiko, , 2009
