Proceedings of the Japan Academy

The product of a logarithmic method and the sequence-to-sequence quasi-Hausdorff method

T. Pati and S. N. Lal

Full-text: Open access

Article information

Source
Proc. Japan Acad., Volume 38, Number 8 (1962), 432-437.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195523283

Digital Object Identifier
doi:10.3792/pja/1195523283

Mathematical Reviews number (MathSciNet)
MR0154004

Zentralblatt MATH identifier
0113.04703

Subjects
Primary: 40.30

Citation

Pati, T.; Lal, S. N. The product of a logarithmic method and the sequence-to-sequence quasi-Hausdorff method. Proc. Japan Acad. 38 (1962), no. 8, 432--437. doi:10.3792/pja/1195523283. https://projecteuclid.org/euclid.pja/1195523283


Export citation

References

  • [1] D. Borwein: A Logarithmic method of summability, Jour. London Math. Soc, 33 (1958).
  • [2] G. H. Hardy: Divergent Series, Oxford (1949).
  • [3] A. Jakimovski: Some remarks on Tauberian theorems, Quart. Jour. Math., Oxford, 2, 115-131 (1958).
  • [4] S. N. Lai: On products of summability methods and generalized Mercerian theorems, forthcoming in Mathematics Student.
  • [5] T. Pati: Products of summability methods, Proc. Nat. Inst. Sc, India, 20, 348-351 (1954).
  • [6] M. S. Ramanujan: Theorems on the product of Quasi-Hausdorff and Abel transforms, Math. Zeitschrift, 64, 442-447 (1956).
  • [7] M. S. Ramanujan: On products of summability methods, Math. Zeitschrift, 69, 423-428 (1958).
  • [8] C. T. Rajagopal: Theorems on the product of summability methods with applications, Jour. Indian Math. Soc. (New Series), 18, 89-105 (1954).
  • [9] Szasz: On products of summability methods, Proc. Amer. Math. Soc, 3, 257-263 (1952).
  • [10] Szasz: On the product of two summability methods, Ann. Soc. Polonaise de Math., 25, 75-784 (1952-53).