Proceedings of the Japan Academy

Note on inverse images under open finite-to-one mappings

Akihiro Okuyama

Full-text: Open access

Article information

Source
Proc. Japan Acad., Volume 43, Number 10 (1967), 953-956.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195521392

Digital Object Identifier
doi:10.3792/pja/1195521392

Mathematical Reviews number (MathSciNet)
MR0234416

Zentralblatt MATH identifier
0168.43605

Subjects
Primary: 54.35

Citation

Okuyama, Akihiro. Note on inverse images under open finite-to-one mappings. Proc. Japan Acad. 43 (1967), no. 10, 953--956. doi:10.3792/pja/1195521392. https://projecteuclid.org/euclid.pja/1195521392


Export citation

References

  • [1] A. Arhangel'skii: A criterion for the existence of a bicompact element in a continuous decomposition. A theorem on the invariance of weight under open-closed finite-to-one mappings. Dokl. Akad. Nauk S.S.S.R., 166 (1966). Soviet Math. Dokl., 7, 249-253 (1966).
  • [2] A. Arhangel'skii: A theorem on the metrizability of the inverse image of a metric space under an open-closed finite-to-one mapping. Example and unsolved problem. Dokl. Akad. Nauk S.S.S.R., 170 (1966). Soviet Math. Dokl., 7, 1258-1262 (1966).
  • [3] A. Arhangel'skii: On closed mappings, bicompact spaces, and a problem of P. Alexandrov. Pacific J. Math., 18, 201-208 (1966).
  • [4] S. Hanai: Inverse images of closed continuous mappings. I. Proc. Japan Acad., 37, 298-301 (1961).
  • [5] E. Michael: A note on paracompact spaces. Proc. Amer. Math. Soc, 4, 831-838 (1953).
  • [6] E. Michael: Zo-spaces. J. Math. Mech., 15, 983-1002 (1966).
  • [7] K. Morita: Product of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
  • [8] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces (to appear).