Proceedings of the Japan Academy

Quadruply-transitive permutation groups whose four-point stabilizer is a Frobenius group

Mitsuo Yoshizawa

Full-text: Open access

Article information

Source
Proc. Japan Acad., Volume 53, Number 1 (1977), 20-22.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195517922

Digital Object Identifier
doi:10.3792/pja/1195517922

Mathematical Reviews number (MathSciNet)
MR0435195

Zentralblatt MATH identifier
0375.20003

Citation

Yoshizawa, Mitsuo. Quadruply-transitive permutation groups whose four-point stabilizer is a Frobenius group. Proc. Japan Acad. 53 (1977), no. 1, 20--22. doi:10.3792/pja/1195517922. https://projecteuclid.org/euclid.pja/1195517922


Export citation

References

  • [1] H. Nagao and T. Oyama: On multiply transitive groups. II, IV, VII, VIII, IX, X, XI, and XIII. Osaka J. Math., 2, 129-136 (1965), 2, 327-341 (1965), 5, 155-164 (1968), 6, 315-319 (1969), 7, 41-56 (1970), 8, 99-130 (1971), 10, 379-439 (1973), and 13, 367-383 (1976).
  • [2] M. Aschbacher: 2-transitive groups whose 2-point stabilizer has 2-rank 1. J. Algebra, 36, 98-127 (1975).
  • [3] Y. Hiramine: 4-fold transitive groups in which any 2-element and any 3-element of a stabilizer of four points are commutative (to appear).
  • [4] W. Burnside: On groups which admit certain isomorphisms. Messenger Math., 33, 124-126 (1903).
  • [5] M. E. O'Nan: Normal structure of the one point stabilizer of a doubly transitive permutation groups. II. Trans. Amer. Math. Soc, 215, 43-74 (1975).
  • [6] M. E. O'Nan: Triply transitive permutation groups whose two point stabilizer is local. J. Algebra, 29, 368-386 (1974).
  • [7] J. H. Walter: Finite groups with abelian Sylow 2-subgroups. Ann. of Math., 89, 405-514 (1969).
  • [8] R. Gilman and D. Gorenstein: Finite groups with Sylow 2-subgroups of class two. I, II. Trans. Amer. Math. Soc, 207, 1-101, 103-126 (1975).