Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the microlocal structure of a regular prehomogeneous vector space associated with $\mathrm{GL}\left( 8 \right)$

Ikuzō Ozeki

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 56, Number 1 (1980), 18-21.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195517030

Digital Object Identifier
doi:10.3792/pjaa.56.18

Mathematical Reviews number (MathSciNet)
MR562863

Zentralblatt MATH identifier
0454.58014

Subjects
Primary: 20G05: Representation theory
Secondary: 15A72: Vector and tensor algebra, theory of invariants [See also 13A50, 14L24]

Citation

Ozeki, Ikuzō. On the microlocal structure of a regular prehomogeneous vector space associated with $\mathrm{GL}\left( 8 \right)$. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 1, 18--21. doi:10.3792/pjaa.56.18. https://projecteuclid.org/euclid.pja/1195517030


Export citation

References

  • [1] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
  • [2] T. Kimura: The holonomy diagrams and the 6-f unctions of irreducible regular prehomogeneous vector spaces (to appear).
  • [3] I. Ozeki: On the microlocal structure of the regular prehomogeneous vector space associated with £L(5)XGL(4). I. Proc. Japan Acad., 55A, 37-40 (1979).
  • [4] G. B. Gurevich: Theory of Algebraic Invariants. P. Noordhoff Ltd.-Gronin-gen, The Netherlands, pp. 390-395 (1964).
  • [5] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima: Micro-local analysis of prehomogeneous vector spaces (to appear).
  • [6] I. Ozeki: The holonomy diagrams of certain prehomogeneous vector spaces. Kokyuroku RIMS, Kyoto Univ., no. 266, pp. 236-258 (1976) (in Japanese).
  • [7] T. Kimura and M. Muro: On some series of regular irreducible prehomogeneous vector spaces. Proc. Japan Acad., 55A, 384-389 (1979).