Proceedings of the Japan Academy, Series A, Mathematical Sciences

Nonexistence of minimizing harmonic maps from $2$-spheres

Akito Futaki

Full-text: Open access

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 56, Number 6 (1980), 291-293.

First available in Project Euclid: 20 November 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]


Futaki, Akito. Nonexistence of minimizing harmonic maps from $2$-spheres. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 6, 291--293. doi:10.3792/pjaa.56.291.

Export citation


  • [1] J. Eells and L. Lemaire: A report on harmonic maps. Bull. London Math. Soc, 10, 1-68 (1978).
  • [2] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86, 109-160 (1964).
  • [3] A. Futaki: On compact Kahler manifolds with semipositive bisectional curvature (to appear in J. Fac. Sci. Univ. Tokyo, ser. 1A).
  • [4] R. S. Hamilton: Harmonic maps of manifolds with boundary. Lect. Notes in Math., vol. 471, Springer, Berlin (1975).
  • [5] L. Lemaire: Applications harmoniques de surfaces Riemanniennes. J. Diff. Geom., 13, 51-78 (1978).
  • [6] A. Lichnerowicz: Applications harmoniques et varietes Kahleriennes. Symp. Math., vol.3, Bologna, pp. 341-402 (1970).
  • [7] W. H. Meeks, III and S. T. Yau: Topology of three dimensional manifolds and the embedding problems in minimal surface theory (preprint).
  • [8] J. Sacks and K. Uhlenbeck: The existence of minimal immersions of 2-spheres. Bull. Amer. Math. Soc, 83, 1033-1036 (1977) (preprint with the same title).
  • [9] Y. T. Siu and S. T. Yau: Compact Kahler manifolds of positive bisectional curvature (preprint).