Proceedings of the Japan Academy, Series A, Mathematical Sciences

Free arrangements of hyperplanes and unitary reflection groups

Hiroaki Terao

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 56, Number 8 (1980), 389-392.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195516722

Digital Object Identifier
doi:10.3792/pjaa.56.389

Mathematical Reviews number (MathSciNet)
MR596011

Zentralblatt MATH identifier
0476.14016

Subjects
Primary: 32C40
Secondary: 05B25: Finite geometries [See also 51D20, 51Exx]

Citation

Terao, Hiroaki. Free arrangements of hyperplanes and unitary reflection groups. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 8, 389--392. doi:10.3792/pjaa.56.389. https://projecteuclid.org/euclid.pja/1195516722


Export citation

References

  • [1] E. Brieskorn: Sur les groupes de tresses (d'apres V. I. Arnold). Seminaire Bourbaki 24e annee, 1971/72, no. 401. Lect. Notes in Math., vol. 317, Berlin-Heidelberg-New York, Springer (1973).
  • [2] P. Orlik and L. Solomon: Combinatorics and topology of complements of hyperplanes. Invent. Math., 56, 167-189 (1980).
  • [3] P. Orlik and L. Solomon: Unitary reflection groups and cohomology. Ibid., 59, 77-94 (1980).
  • [4] K. Saito: On the uniformization of complements of discriminant loci. Symp. in Pure Math., Williams College, 1975, Providence, AMS (1977).
  • [5] K. Saito: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA, 27, 265-291 (1980).
  • [6] G. C. Shepherd and J. A. Todd: Finite unitary reflection groups. Canad. J. Math., 6, 274-304 (1954).
  • [7] H. Terao: Arrangements of hyperplanes and their freeness I. J. Fac. Sci. Univ. Tokyo, Sect. IA, 27, 293-312 (1980).
  • [8] H. Terao: Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula (to appear).
  • [9] H. Terao: On Betti numbers of complement of hyperplanes (to appear).