Proceedings of the Japan Academy, Series A, Mathematical Sciences

On spectral families of projections in Hardy spaces

Earl Berkson

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 58, Number 10 (1982), 436-439.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195515798

Digital Object Identifier
doi:10.3792/pjaa.58.436

Mathematical Reviews number (MathSciNet)
MR694954

Zentralblatt MATH identifier
0514.47024

Subjects
Primary: 47D05
Secondary: 47B38: Operators on function spaces (general)

Citation

Berkson, Earl. On spectral families of projections in Hardy spaces. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 10, 436--439. doi:10.3792/pjaa.58.436. https://projecteuclid.org/euclid.pja/1195515798


Export citation

References

  • [1] H. Benzinger, E. Berkson, and T. A. Gillespie: Spectral families of projections, semigroups, and differential operators. Trans. Amer. Math. Soc. (to appear).
  • [2] E. Berkson: Spectral families of projections in Hardy spaces (submitted).
  • [3] E. Berkson, R. Kaufman, and H. Porta: Mobius transformations of the disc and one-parameter groups of isometries of H?. Trans. Amer. Math. Soc, 199, 223-239 (1974).
  • [4] E. Berkson and H. Porta: Hermitian operators and one-parameter groups of isometries in Hardy spaces. Trans. Amer. Math. Soc, 185, 331-344 (1973).
  • [5] T. A. Gillespie: A spectral theorem for 2> translations. J. London Math. Soc, (2) 11, 499-508 (1975).
  • [6] E. Hille and R. S. Phillips: Functional analysis and semi-groups. Amer. Math. Soc. Colloquium Publications, vol.31, Providence (1957).
  • [7] J. R. Ringrose: On well-bounded operators. II. Proc. London Math. Soc, (3) 13, 613-638 (1963).
  • [8] D. R. Smart: Conditionally convergent spectral expansions. J. Australian Math. Soc, 1, 319-333 (1960).