Proceedings of the Japan Academy, Series A, Mathematical Sciences

Transmutation theory for certain radial operators

Robert Carroll

Full-text: Open access

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 59, Number 2 (1983), 51-54.

First available in Project Euclid: 19 November 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35P99: None of the above, but in this section
Secondary: 34B25


Carroll, Robert. Transmutation theory for certain radial operators. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 2, 51--54. doi:10.3792/pjaa.59.51.

Export citation


  • [1] A. Bottino, A. Longoni, and T. Regge: Potential scattering for complex energy and angular momentum. Nuovo Cimento, 23, 954-1004 (1962).
  • [2] G. Burdet, M. Giffon, and E. Predazzi: On the inversion problem in the X plane, ibid., 36, 1337-1347 (1965).
  • [3] R. Carroll: Transmutation and Operator Differential Equations. North-Holland, Amsterdam (1979).
  • [4] R. Carroll: Transmutation, Scattering Theory, and Special Functions. North-Holland, Amsterdam (1982).
  • [5] R. Carroll: The Bergman-Gilbert operator as a transmutation. CR Royal Soc Canada, 4, no. 5 (1982).
  • [6] K. Chadan and P. Sabatier: Inverse Problems in Quantum Scattering Theory. Springer, N.Y. (1977).
  • [7] D. Colton and R. Kress: The construction of solutions to acoustic scattering problems in a spherically stratified medium, I and II. Quart. Jour. Mech. Appl. Math., 31, 9-17 (1978); 32, 53-62 (1979).
  • [8] D. Colton and W. Wendland: Constructive methods for solving the exterior Neumann problem for the reduced wave equation in a spherically symmetric medium. Proc. Roy. Soc. Edinburgh, 75A, 97-107 (1975/76).
  • [9] C. Coudray and M. Coz: Generalized translation operators and the construction of potentials at fixed energy. Annals Physics, 61, 488-529 (1970).
  • [10] D. Jones: The Kontorovic-Lebedev transform. Jour. Inst. Math. Appl., 26, 133-141 (1980).
  • [11] J. Loeffel: On an inverse problem in potential scattering theory. Ann. Inst. H. Poincare, 8, 339-447 (1968).
  • [12] R. Newton: The Complex J Plane. Benjamin, N.Y. (1964).