Proceedings of the Japan Academy, Series A, Mathematical Sciences

Extended Epstein's zeta functions over $CM$-fields

Hirofumi Ishikawa

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 60, Number 8 (1984), 306-308.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195514996

Digital Object Identifier
doi:10.3792/pjaa.60.306

Mathematical Reviews number (MathSciNet)
MR774580

Zentralblatt MATH identifier
0555.10010

Subjects
Primary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]
Secondary: 11E45: Analytic theory (Epstein zeta functions; relations with automorphic

Citation

Ishikawa, Hirofumi. Extended Epstein's zeta functions over $CM$-fields. Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), no. 8, 306--308. doi:10.3792/pjaa.60.306. https://projecteuclid.org/euclid.pja/1195514996


Export citation

References

  • [1] Asai, T.: On a certain function analogous to log. Nagoya Math. J., 40, 193-211 (1970).
  • [2] Hirzebruch, F. and Zagier, D.: Intersection numbers of curves on Hilbert modular surface and modular forms of Neben types. Invent, math., 36, 57-113 (1976).
  • [3] Konno, S.: On Kronecker's limit formula in a totally imaginary quadratic field over a totally real algebraic number field. J. Math. Soc. Japan, 17, 411-424 (1965).
  • [4] Moreno, C. J.: The Chowla-Selberg formula. J. Number Theory, 17, 226- 245 (1983).
  • [5] Selberg, A. and Chowla, S.: On Epstein's zeta-function. J. Reine Angew. Math., 227, 86-110 (1967).
  • [6] Tamagawa, T.: On some extensions of Epstein's Z-series. Proc. International Symposium on alg. number theory, Tokyo-Nikko, pp. 259-261 (1955).
  • [7] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic forms. Lect. Notes in Math., vol. 627, Springer, pp. 105-169 (1977).