Proceedings of the Japan Academy, Series A, Mathematical Sciences

Dual pairs on spinors cases of $\left( {C_m ,C_n } \right)$ and $\left( {C_m^{\left( 1 \right)} ,C_n^{\left( 1 \right)} } \right)$

Kohji Hasegawa

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 63, Number 10 (1987), 400-403.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195513475

Digital Object Identifier
doi:10.3792/pjaa.63.400

Mathematical Reviews number (MathSciNet)
MR965731

Zentralblatt MATH identifier
0641.17009

Subjects
Primary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Citation

Hasegawa, Kohji. Dual pairs on spinors cases of $\left( {C_m ,C_n } \right)$ and $\left( {C_m^{\left( 1 \right)} ,C_n^{\left( 1 \right)} } \right)$. Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 10, 400--403. doi:10.3792/pjaa.63.400. https://projecteuclid.org/euclid.pja/1195513475


Export citation

References

  • [1] I. Frenkel: Spinor representations of affine Lie algebras. Proc. Nat'l. Acad. Sci. USA, 77, 6303-6306 (1980).
  • [2] K. Hasegawa: Dual pairs on spinors (in preparation).
  • [3] R. Howe: Dual pairs in physics. Lect. Appl. Math.,21, 179-207 (1985).
  • [4] M. Jimbo and T. Miwa: On a duality of branching rules for affine Lie algebras. Advanced Studies in Pure Math., 6, 17-65 (1985).
  • [5] V. G. Kac: Infinite Dimensional Lie Algebras. 2nd ed., Cambridge (1985).
  • [6] V. G. Kac and M. Wakimoto: Modular and conformal invariance constraints in representation theory of affine Lie algebras (1987) (preprint).
  • [7] I. Yamanaka: Equivalence of degenerate (super) conformal models. Prog. Theor. Phys., 76, 1154-1165 (1986).

Corrections

  • See Correction: errata. Proc. Japan Acad. Ser. A Math. Sci., Volume 63, Number 10 (1987).