Proceedings of the Japan Academy, Series A, Mathematical Sciences

Singular variation of domain and eigenvalues of the Laplacian with the third boundary condition

Shin Ozawa and Susumu Roppongi

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 68, Number 7 (1992), 186-189.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511704

Digital Object Identifier
doi:10.3792/pjaa.68.186

Mathematical Reviews number (MathSciNet)
MR1193178

Zentralblatt MATH identifier
0838.35089

Citation

Ozawa, Shin; Roppongi, Susumu. Singular variation of domain and eigenvalues of the Laplacian with the third boundary condition. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 7, 186--189. doi:10.3792/pjaa.68.186. https://projecteuclid.org/euclid.pja/1195511704


Export citation

References

  • [1] C. Anne: Spectre du laplacien et ecrasement d'ansens. Ann. Sci. Ecole Norm. Sup., 20, 271-280 (1987).
  • [2] J. M. Arrieta, J. Hale, and Q. Han: Eigenvalue problems for nonsmoothly perturbed domains. J. Diff. Equations, 91, 24-52 (1991).
  • [3] G. Besson : Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. Bull. Soc. Math. France, 113, 211-239 (1985).
  • [4] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press (1984).
  • [5] S. Jimbo: The singularly perturbed domain and the characterization for the eigen-functions with Neumann boundary condition. J. Diff. Equations, 77, 322-350 (1989).
  • [6] S. Ozawa: Singular variation of domain and spectra of the Laplacian with small Robin coditional boundary. I (to appear in Osaka J. Math.).
  • [7] S. Ozawa: Spectra of domains with small spherical Neumann boundary. J. Fac. Sci. Univ. Tokyo, Sec. IA, 30, 259-277 (1983).
  • [8] S. Ozawa: Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains--the Neumann condition--. Osaka J. Math., 22, 639-655 (1985).
  • [9] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo, Sec. IA,30, 53-62 (1983).
  • [10] J. Rauch and M. Taylor: potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 19, 27-59 (1975).